Example #1
0
def JESA_DropAll():
    db_access = DBAccess(env.DB_NAME)
    for collection in COLLECTIONS_CACHE:
        db_access.clear_collection(collection)
    collections = list(COLLECTIONS_CACHE)
    COLLECTIONS_CACHE.clear()
    return "|".join(collections)
Example #2
0
def load_simul_option_from_db(simuloption):
    table = []
    # reading option current values from database
    records, ncol = DBAccess(env.DB_NAME).get_all_records(simuloption)
    records.pop("_id", None)
    table = ff.create_table(records, index=True, index_title=simuloption + ' current values', height_constant=20)
    table.layout.width = 650

    return table
Example #3
0
def get_result(db_name, collection, scenario_id):
    """
    Get results from collection
    :param db_name: name of current database
    :param collection: name
    :param scenario_id: scenario id
    :return: JSON
    """
    reset_db_name(db_name)
    record = DBAccess(env.DB_RESULT_NAME).get_one_record(
        collection, {"Scenario": int(scenario_id)})
    _id = record["_id"]
    record.pop("_id", None)
    return jsonify(record)
Example #4
0
def index():
    """
    Get dashboard  monitoring
    :return: template
    """
    assets_path = "/"
    dashboard_url = "http://127.0.0.1:5000/"
    manager_rabbit = ManagerRabbit()
    consumers = manager_rabbit.get_list_consumers()
    check_memcached()
    except_dbs = ['admin', 'config', 'local', env.MONITORING_DB_NAME]
    db_names = [database for database in DBAccess.get_dbs_names() if database not in except_dbs and '_results' not in database]
    return render_template('index.html', service_status=check_service_data(),
                           dashboard_url=dashboard_url,
                           db_names=db_names,
                           cycle=env.RABBITMQ_CYCLE, consumers=consumers,
                           images=images,
                           assets_path=assets_path,
                           nb_pr_page=env.MONITORING_NB_PAGE,
                           count_worker=check_max_worker(env.RABBITMQ_SIMULATOR_QUEUE_NAME),
                           global_result_worker=check_worker_result(RABBITMQ_GLOBAL_RESULT_QUEUE_NAME),
                           detailed_result_worker=check_worker_result(RABBITMQ_DETAILED_RESULT_QUEUE_NAME),
                           queue_simulate=env.RABBITMQ_SIMULATOR_QUEUE_NAME,
                           canvas_url=env.CANVAS_URL,
                           logistics_lp=env.LOGISTICS_LP
                           )
Example #5
0
def get_history(context=None):
    """
    Get history with pagination for best scenarios and task monitor
    :param context: String (best or None)
    :return: JSON
    """
    if request.json['current_page'] and request.json['nb_pr_page']:
        db = DBAccess(env.MONITORING_DB_NAME)
        if context == 'best':
            collection = env.MONITORING_COLLECTION_HISTORY_BEST_NAME
        else:
            collection = env.MONITORING_COLLECTION_HISTORY_NAME
        list_history, total_items = db.get_records_with_pagination(collection=collection,
                                                      filter_=None,sort_key="_id", sort_direction=-1,
                                                      current_page=request.json['current_page'],
                                                      nb_pr_page=request.json['nb_pr_page'])
        return jsonify(listHistory=json.loads(dumps(list_history)), total_items=total_items)
Example #6
0
def simulate(cycle=1, phase=0, use_db=False):
    if use_db:
        db = DBAccess(env.DB_RESULT_NAME)
        db.clear_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME)
    scenarios_global, scenarios_details = Simulator().simulate(
        cycle, phase, logistics_lp=False)
    if use_db:
        for scenario in scenarios_global:
            db.save_to_db_no_check(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                                   scenarios_global[scenario])

        for scenario in scenarios_details:
            json_data = json.dumps(NodeJSONEncoder().encode(
                scenarios_details[scenario]))
            data = json.loads(json.loads(json_data))
            db.save_to_db_no_check(env.DB_DETAILED_RESULT_COLLECTION_NAME,
                                   data)
Example #7
0
def get_all_records():
    '''Returns all the scenario results that are stored in the database'''
    records = {}
    all_records, nb_docs = DBAccess(env.DB_RESULT_NAME).get_all_records("scenarios")
    for i in range(nb_docs):
        records.update(all_records[i])
        records.pop("_id", None)
    #records = DBAccess(env.DB_RESULT_NAME).get_records("scenarios")

    return records
Example #8
0
def insert_history(phase, task_to_save, status, message):
    """
    Insert history for monitoring
    :param phase: Int
    :param task_to_save: Dict
    :param status: Int
    :param message: String
    :return: None
    """
    query_insert = dict()
    query_insert['phase'] = phase
    query_insert['status'] = status
    query_insert['message'] = message
    query_insert['time_start'] = task_to_save['time_start']
    query_insert['time_end'] = datetime.datetime.now().strftime("%d/%m/%y %H:%M:%S")
    query_insert['db_name'] = task_to_save['db_name']
    query_insert['total_scenario'] = task_to_save['total_scenario']
    db = DBAccess(env.MONITORING_DB_NAME)
    db.save_to_db_no_check(env.MONITORING_COLLECTION_HISTORY_NAME, query_insert)
def simulate(cycle=1, phase=0):
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME)
    db.clear_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME)
    sim = Simulator()
    granulation_solver = GranulationSolver(sim.nodes, sim.sales_plan)
    granulation_results = granulation_solver.launch_granulation_solver()
Example #10
0
def get_all_results(db_name, collection):
    """
    Get results from collection
    :param db_name: name of current database
    :param collection: name
    :return: JSON
    """
    reset_db_name(db_name)
    records, _ = DBAccess(env.DB_RESULT_NAME).get_all_records(collection)
    for record in records:
        _id = record["_id"]
        record.pop("_id", None)
    return jsonify(records)
Example #11
0
def get_best_global_scenarios(quantile_step):
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)

    scenarios = db.get_records(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                               {}).sort([("Cost PV", DESCENDING)])
    step = int(quantile_step * scenarios.count())
    representative_scenarios = [
        scenarios.skip(step * i)[0]
        for i in range(0, int(scenarios.count() / step))
    ]
    db.save_to_db_no_check(env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME,
                           representative_scenarios)
Example #12
0
def get_records_into_dics(db_name, collection):
    """
    Get records from collection and transform into dictionary
    :param db_name: name of current database
    :param collection: name
    :return: JSON
    """
    reset_db_name(db_name)
    records = DBAccess(env.DB_NAME).get_all_records(collection)
    dic_records = {}
    for record in records:
        _id = record["_id"]
        record.pop("_id", None)
        dic_records[str(_id)] = record
    return json.dumps(JSONEncoder().encode(records))
Example #13
0
def get_results(db_name, collection, scenario_id):
    """
    Get results from collection
    :param db_name: name of current database
    :param collection: name
    :param scenario_id: scenario id
    :return: JSON
    """
    reset_db_name(db_name)

    cursor = DBAccess(env.DB_RESULT_NAME).get_records(
        collection, {"Scenario": int(scenario_id)})
    records = []
    for record in cursor:
        record.pop("_id", None)
        records.append(record)
    return jsonify(records)
Example #14
0
def save_data():
    try:
        reset_db_name(request.json['db_name'])
        records = request.json['table']
        db = DBAccess(env.DB_NAME)
        name_ = trim_collection_name(request.json['name'])
        db.clear_collection(name_)
        db.save_to_db(name_, records)
        return jsonify(status=env.HTML_STATUS.OK)
    except Exception as e:
        logger.error("Cannot save data: %s" % e)
        return jsonify(status=env.HTML_STATUS.ERROR)
Example #15
0
def get_best_detailed_scenarios(quantile_step):
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)

    scenarios = db.get_fields(env.DB_GLOBAL_RESULT_COLLECTION_NAME, {
        "Cost PV": 1,
        "Scenario": 1
    }, [("Cost PV", DESCENDING)])
    step = int(quantile_step * scenarios.count())
    points = [
        scenarios.skip(step * i)[0]["Scenario"]
        for i in range(0, int(scenarios.count() / step))
    ]
    representative_scenarios = db.get_records(
        env.DB_DETAILED_RESULT_COLLECTION_NAME, {"Scenario": {
            "$in": points
        }})
    db.save_to_db_no_check(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME,
                           representative_scenarios)
Example #16
0
def check_worker():
    """
    Get information for each Workers
    :return: JSON
    """
    manager_rabbit = ManagerRabbit()
    list_queues = manager_rabbit.get_list_queues()
    consumers = manager_rabbit.get_list_consumers()
    workers_info = dict()
    # get status best scenarios for current db_name
    best_scenarios_status = dict()

    except_dbs = ['admin', 'config', 'local', env.MONITORING_DB_NAME]
    db_names = [database for database in DBAccess.get_dbs_names() if
                database not in except_dbs and '_results' not in database]

    if ('db_name' in request.json) and (request.json['db_name'] is not None):
        best_scenarios_status[request.json['db_name']] = env.HTML_STATUS.OK.value
        if memcached_client.get(request.json['db_name']):
            best_scenarios_status[request.json['db_name']]=memcached_client.get(request.json['db_name'])
    else:
        return jsonify(status=env.HTML_STATUS.ERROR.value)

    # Status worker global results
    worker_global_result = check_worker_result(RABBITMQ_GLOBAL_RESULT_QUEUE_NAME)

    # Status worker detailed results
    worker_detailed_result = check_worker_result(RABBITMQ_DETAILED_RESULT_QUEUE_NAME)


    # Count workers running
    count_worker = check_max_worker(env.RABBITMQ_SIMULATOR_QUEUE_NAME)

    for phase in range(env.RABBITMQ_CYCLE):
        if memcached_client.get("workers_info_%i" % phase):
            workers_info[phase] = memcached_client.get("workers_info_%i" % phase)[str(phase)]
    return jsonify(workersInfo=workers_info, list_queues=list_queues, consumers=consumers,
                   best_scenarios_status=best_scenarios_status, db_names=db_names,
                   worker_global_result=worker_global_result,
                   worker_detailed_result=worker_detailed_result,
                   count_worker=count_worker
                   )
Example #17
0
 def save_results(self, ch, method, properties, body):
     """
     Callback function called for each task
     :param ch:
     :param method:
     :param properties:
     :param body:
     :return: None
     """
     logger.info(" [*] Saving results %r" % body[0:env.HEAD_DATA_BITS])
     message = body[env.HEAD_DATA_BITS:]
     message_db = str(body[env.HEAD_DATA_BITS:env.HEAD_DATA_BITS + env.DB_NAME_BITS], 'utf-8')
     dol_index = message_db.find("$")
     db_name = message_db[0:dol_index]
     data = json.loads(json.loads(message[dol_index + 1:]))
     if isinstance(data, dict) and "timestamp" not in data:
         data["timestamp"] = datetime.now()
     DBAccess('%s_results' % db_name).save_to_db_no_check(self.collection_name, data)
     logger.info(" [x] Done")
     ch.basic_ack(delivery_tag=method.delivery_tag)
Example #18
0
def JESA_UploadTable(name, table, db_name="mine2farm"):
    records = []
    header = list(table)
    for row in table.iterrows():
        record = {}
        for h in header:
            record[h] = row[1][h]
        records.append(record)

    env.DB_NAME = db_name
    db_access = DBAccess(env.DB_NAME)
    name_ = trim_collection_name(name)
    db_access.clear_collection(name_)
    db_access.save_to_db(name_, records)
    COLLECTIONS_CACHE.add(name_)
    return "%s Saved! @%s" % (name_, datetime.now().strftime("%H:%M:%S"))
Example #19
0
def get_best_scenarios(quantile_step, db_name="mine2farm"):
    update_cache(db_name, -1)
    try:
        time_start = datetime.datetime.now().strftime("%d/%m/%y %H:%M:%S")

        # insert status of best scenarios "running"
        db_history = DBAccess(env.MONITORING_DB_NAME)
        query_insert = {
            'time_start': time_start,
            'db_name': db_name,
            'quantile_step': quantile_step,
            'status': -1
        }
        _id = db_history.save_to_db_no_check(
            env.MONITORING_COLLECTION_HISTORY_BEST_NAME, query_insert)

        # get best representative scenarios
        quantile_step = quantile_step / 100.
        reset_db_name(db_name)
        db = DBAccess(env.DB_RESULT_NAME)
        logger.info("Deleting best collections from DB")
        db.clear_collection(env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)
        scenarios = db.get_records(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                                   {}).sort([("Cost PV", DESCENDING)])

        scenarios_count = scenarios.count()
        step = int(quantile_step * scenarios_count)
        # save to db
        if step == 0:
            # all scenarios are concerned
            logger.info("Moving all scenarios to best collections")
            db.copy_to_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME,
                                  env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME)
            db.copy_to_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME,
                                  env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)
            details_count = db.count(
                env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME)
        else:
            # filter on specific scenarios
            representative_scenario_ids = [
                scenarios.skip(step * i)[0]["Scenario"]
                for i in range(0, int(scenarios_count / step))
            ]
            logger.info("List of selected best scenarios: %s" %
                        representative_scenario_ids)
            # simulate
            scenarios_global, scenarios_details = \
                Simulator().simulate(scenarios_filter=representative_scenario_ids, logistics_lp=env.LOGISTICS_LP)
            # save
            for scenario in scenarios_global:
                db.save_to_db_no_check(
                    env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME,
                    scenarios_global[scenario])
            for scenario in scenarios_details:
                json_data = json.dumps(NodeJSONEncoder().encode(
                    scenarios_details[scenario]))
                data = json.loads(json.loads(json_data))
                db.save_to_db_no_check(
                    env.DB_DETAILED_BEST_RESULT_COLLECTION_NAME, data)
            details_count = len(scenarios_details)

        # status update
        query_insert['global_count'] = scenarios_count
        query_insert['detailed_count'] = details_count
        filter_ = {'_id': ObjectId(_id)}
        db_history.update_record(
            collection=env.MONITORING_COLLECTION_HISTORY_BEST_NAME,
            filter_=filter_,
            data=query_insert)

        # raw materials sensitivities
        logger.info("Running sensitivity over raw materials")
        db.clear_collection(env.DB_SENSITIVITY_COLLECTION_NAME)
        raw_materials_df = Driver().get_data("raw_materials")
        shocks = {}
        for raw_material in raw_materials_df:
            item = raw_material["Item"]
            shocks[item] = 1
        scenarios_df = pd.DataFrame(Driver().get_results(
            env.DB_GLOBAL_BEST_RESULT_COLLECTION_NAME))
        scenarios_dic = Utils.get_scenario_from_df(scenarios_df)
        risk_engine = RiskEngine()

        for scenario_id in scenarios_dic:
            deltas = risk_engine.compute_delta(scenarios_dic[scenario_id],
                                               shocks,
                                               with_logistics=env.LOGISTICS_LP)

            deltas['Scenario'] = int(scenario_id)
            db.save_to_db_no_check(env.DB_SENSITIVITY_COLLECTION_NAME, deltas)

        # status update
        query_insert['time_end'] = datetime.datetime.now().strftime(
            "%d/%m/%y %H:%M:%S")
        query_insert['status'] = 0
        filter_ = {'_id': ObjectId(_id)}
        db_history.update_record(
            collection=env.MONITORING_COLLECTION_HISTORY_BEST_NAME,
            filter_=filter_,
            data=query_insert)
        update_cache(db_name, 0)

    except Exception as e:
        logger.error("Best scenarios failed")
        update_cache(db_name, 0)
Example #20
0
def get_sales_plan():
    '''Returns all the scenario results that are stored in the database'''
    records = DBAccess(env.DB_NAME).get_all_records('sales_plan')
    # records = DBAccess(env.DB_RESULT_NAME).get_records("scenarios")
    records.pop("_id", None)
    return records
Example #21
0
    def serve(self, cycle):
        """
        Crating tasks and sending to broker
        :param cycle:
        :return:
        """
        # reset scenarios table
        db = DBAccess(env.DB_RESULT_NAME)
        db.clear_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME)
        db.clear_collection(env.DB_SENSITIVITY_COLLECTION_NAME)
        db.create_index(
            env.DB_GLOBAL_RESULT_COLLECTION_NAME,
            [("Cost PV", pymongo.DESCENDING), ("Scenario", pymongo.ASCENDING)]
        )
        db.create_index(
            env.DB_DETAILED_RESULT_COLLECTION_NAME,
            [("Scenario", pymongo.ASCENDING)]
        )
        db.save_to_db_no_check(env.DB_SENSITIVITY_COLLECTION_NAME, {"NH3": 0, "ACS": 0, "HCl": 0, "Raw water": 0,
                                                                    "Electricity": 0, "K09": 0, "Rock": 0,
                                                                    "Scenario": -1})

        data = []
        for i in range(cycle):
            data.append(json.dumps({
                "cycle": cycle,
                "phase": i,
                "db_name": env.DB_NAME,
                "logistics_lp": env.LOGISTICS_LP
            }))
        broker = Broker(env.RABBITMQ_SIMULATOR_QUEUE_NAME)
        broker.publish(data)
Example #22
0
from app.data.DBAccess import DBAccess
from app.model.Simulator import *
import cProfile
from multiprocessing import Pool, TimeoutError, Process
from app.data.DBAccess import DBAccess
from flask import Response, render_template

from flask import Flask
import dash
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output

server = Flask(__name__)
db = DBAccess(env.DB_RESULT_NAME)
db.clear_collection(env.DB_GLOBAL_RESULT_COLLECTION_NAME)
db.clear_collection(env.DB_DETAILED_RESULT_COLLECTION_NAME)
simulator = Simulator()
@server.route('/')
def inddex():
    return 'Test'

app = dash.Dash(__name__,
                server=server,
                routes_pathname_prefix='/dash/',
                external_stylesheets=[dbc.themes.BOOTSTRAP]
                )

app.layout = html.Div(
    [
Example #23
0
# -*- coding: utf-8 -*-

from app.config.env_func import reset_db_name
from app.config.env import DB_SENSITIVITY_COLLECTION_NAME
from app.data.DBAccess import DBAccess
import pandas as pd
import app.config.env as env
from app.data.Client import Driver
from app.risk.RiskEngine import RiskEngine
from tqdm import tqdm
import json
from app.tools import Utils

if __name__ == "__main__":
    reset_db_name('mine2farm')
    db = DBAccess(env.DB_RESULT_NAME)
    db.clear_collection(DB_SENSITIVITY_COLLECTION_NAME)
    raw_materials_sensitivity = []
    raw_materials_df = Driver().get_data("raw_materials")
    shocks = {}
    for raw_material in raw_materials_df:
        item = raw_material["Item"]
        shocks[item] = 1
    #scenarios_df = pd.DataFrame(Driver().get_results(DB_GLOBAL_BEST_RESULT_COLLECTION_NAME))
    scenarios_df = pd.read_csv(env.APP_FOLDER + "outputs/global.csv")
    scenarios_dic = Utils.get_scenario_from_df(scenarios_df)
    for scenario_id in scenarios_dic:
        risk_engine = RiskEngine()
        deltas = risk_engine.compute_delta(scenarios_dic[scenario_id], shocks)
        deltas['Scenario'] = int(scenario_id)
        db.save_to_db_no_check(DB_SENSITIVITY_COLLECTION_NAME, deltas)
Example #24
0
# -*- coding: utf-8 -*-
import os


from app.dashboard.Monitor import MONITOR_SERVER
from app.config import env
import webbrowser

from app.data.DBAccess import DBAccess
from app.tools.monitor_tools import update_mongo_bi

if __name__ == '__main__':

    # os.environ["FLASK_ENV"] = env.MODE_APP
    DBAccess("dummy").clear_collection('dummy')
    DBAccess("dummy").save_to_db_no_check("dummy", [{"dummy": "dummy"}])
    webbrowser.open_new_tab("http://%s:%s" % (env.MONITORING_SERVER, env.MONITORING_PORT))
    MONITOR_SERVER.run(host=env.MONITORING_SERVER, port=env.MONITORING_PORT, debug=env.MODE_DEBUG)

Example #25
0
 def __init__(self):
     self.db = DBAccess(env.DB_RESULT_NAME)