Example #1
0
 def test_raise_value_error_on_empty_anchor_genertor(self):
     anchor_generator_text_proto = """
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     with self.assertRaises(ValueError):
         anchor_generator_builder.build(anchor_generator_proto)
Example #2
0
    def test_build_ssd_anchor_generator_with_defaults(self):
        anchor_generator_text_proto = """
      ssd_anchor_generator {
        aspect_ratios: [1.0]
      }
    """
        anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
        text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
        anchor_generator_object = anchor_generator_builder.build(
            anchor_generator_proto)
        self.assertTrue(
            isinstance(
                anchor_generator_object,
                multiple_grid_anchor_generator.MultipleGridAnchorGenerator))
        for actual_scales, expected_scales in zip(
                list(anchor_generator_object._scales), [(0.1, 0.2, 0.2),
                                                        (0.35, 0.418),
                                                        (0.499, 0.570),
                                                        (0.649, 0.721),
                                                        (0.799, 0.871),
                                                        (0.949, 0.974)]):
            self.assert_almost_list_equal(expected_scales,
                                          actual_scales,
                                          delta=1e-2)
        for actual_aspect_ratio, expected_aspect_ratio in zip(
                list(anchor_generator_object._aspect_ratios),
            [(1.0, 2.0, 0.5)] + 5 * [(1.0, 1.0)]):
            self.assert_almost_list_equal(expected_aspect_ratio,
                                          actual_aspect_ratio)

        with self.test_session() as sess:
            base_anchor_size = sess.run(
                anchor_generator_object._base_anchor_size)
        self.assertAllClose(base_anchor_size, [1.0, 1.0])
Example #3
0
 def test_build_grid_anchor_generator_with_non_default_parameters(self):
     anchor_generator_text_proto = """
   grid_anchor_generator {
     height: 128
     width: 512
     height_stride: 10
     width_stride: 20
     height_offset: 30
     width_offset: 40
     scales: [0.4, 2.2]
     aspect_ratios: [0.3, 4.5]
   }
  """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertTrue(
         isinstance(anchor_generator_object,
                    grid_anchor_generator.GridAnchorGenerator))
     self.assert_almost_list_equal(anchor_generator_object._scales,
                                   [0.4, 2.2])
     self.assert_almost_list_equal(anchor_generator_object._aspect_ratios,
                                   [0.3, 4.5])
     with self.test_session() as sess:
         base_anchor_size, anchor_offset, anchor_stride = sess.run([
             anchor_generator_object._base_anchor_size,
             anchor_generator_object._anchor_offset,
             anchor_generator_object._anchor_stride
         ])
     self.assertAllEqual(anchor_offset, [30, 40])
     self.assertAllEqual(anchor_stride, [10, 20])
     self.assertAllEqual(base_anchor_size, [128, 512])
Example #4
0
def _build_ssd_model(ssd_config, is_training):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.

  Returns:
    SSDMetaArch based on the config.
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor,
                                                   is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
                                                  ssd_config.box_predictor,
                                                  is_training, num_classes)
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight,
   hard_example_miner) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches

  return ssd_meta_arch.SSDMetaArch(
      is_training,
      anchor_generator,
      ssd_box_predictor,
      box_coder,
      feature_extractor,
      matcher,
      region_similarity_calculator,
      image_resizer_fn,
      non_max_suppression_fn,
      score_conversion_fn,
      classification_loss,
      localization_loss,
      classification_weight,
      localization_weight,
      normalize_loss_by_num_matches,
      hard_example_miner)
Example #5
0
    def test_build_ssd_anchor_generator_with_non_default_parameters(self):
        anchor_generator_text_proto = """
      ssd_anchor_generator {
        num_layers: 2
        min_scale: 0.3
        max_scale: 0.8
        aspect_ratios: [2.0]
        height_stride: 16
        height_stride: 32
        width_stride: 20
        width_stride: 30
        height_offset: 8
        height_offset: 16
        width_offset: 0
        width_offset: 10
      }
    """
        anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
        text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
        anchor_generator_object = anchor_generator_builder.build(
            anchor_generator_proto)
        self.assertTrue(
            isinstance(
                anchor_generator_object,
                multiple_grid_anchor_generator.MultipleGridAnchorGenerator))

        for actual_scales, expected_scales in zip(
                list(anchor_generator_object._scales), [(0.1, 0.3, 0.3),
                                                        (0.8, 0.894)]):
            self.assert_almost_list_equal(expected_scales,
                                          actual_scales,
                                          delta=1e-2)

        for actual_aspect_ratio, expected_aspect_ratio in zip(
                list(anchor_generator_object._aspect_ratios), [(1.0, 2.0, 0.5),
                                                               (2.0, 1.0)]):
            self.assert_almost_list_equal(expected_aspect_ratio,
                                          actual_aspect_ratio)

        for actual_strides, expected_strides in zip(
                list(anchor_generator_object._anchor_strides), [(16, 20),
                                                                (32, 30)]):
            self.assert_almost_list_equal(expected_strides, actual_strides)

        for actual_offsets, expected_offsets in zip(
                list(anchor_generator_object._anchor_offsets), [(8, 0),
                                                                (16, 10)]):
            self.assert_almost_list_equal(expected_offsets, actual_offsets)

        with self.test_session() as sess:
            base_anchor_size = sess.run(
                anchor_generator_object._base_anchor_size)
        self.assertAllClose(base_anchor_size, [1.0, 1.0])
Example #6
0
 def test_build_ssd_anchor_generator_with_custom_interpolated_scale(self):
     anchor_generator_text_proto = """
   ssd_anchor_generator {
     aspect_ratios: [0.5]
     interpolated_scale_aspect_ratio: 0.5
     reduce_boxes_in_lowest_layer: false
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertTrue(
         isinstance(
             anchor_generator_object,
             multiple_grid_anchor_generator.MultipleGridAnchorGenerator))
     for actual_aspect_ratio, expected_aspect_ratio in zip(
             list(anchor_generator_object._aspect_ratios),
             6 * [(0.5, 0.5)]):
         self.assert_almost_list_equal(expected_aspect_ratio,
                                       actual_aspect_ratio)
Example #7
0
 def test_build_grid_anchor_generator_with_defaults(self):
     anchor_generator_text_proto = """
   grid_anchor_generator {
   }
  """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertTrue(
         isinstance(anchor_generator_object,
                    grid_anchor_generator.GridAnchorGenerator))
     self.assertListEqual(anchor_generator_object._scales, [])
     self.assertListEqual(anchor_generator_object._aspect_ratios, [])
     with self.test_session() as sess:
         base_anchor_size, anchor_offset, anchor_stride = sess.run([
             anchor_generator_object._base_anchor_size,
             anchor_generator_object._anchor_offset,
             anchor_generator_object._anchor_stride
         ])
     self.assertAllEqual(anchor_offset, [0, 0])
     self.assertAllEqual(anchor_stride, [16, 16])
     self.assertAllEqual(base_anchor_size, [256, 256])
Example #8
0
 def test_build_ssd_anchor_generator_with_custom_scales(self):
     anchor_generator_text_proto = """
   ssd_anchor_generator {
     aspect_ratios: [1.0]
     scales: [0.1, 0.15, 0.2, 0.4, 0.6, 0.8]
     reduce_boxes_in_lowest_layer: false
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertTrue(
         isinstance(
             anchor_generator_object,
             multiple_grid_anchor_generator.MultipleGridAnchorGenerator))
     for actual_scales, expected_scales in zip(
             list(anchor_generator_object._scales),
         [(0.1, math.sqrt(0.1 * 0.15)), (0.15, math.sqrt(0.15 * 0.2)),
          (0.2, math.sqrt(0.2 * 0.4)), (0.4, math.sqrt(0.4 * 0.6)),
          (0.6, math.sqrt(0.6 * 0.8)), (0.8, math.sqrt(0.8 * 1.0))]):
         self.assert_almost_list_equal(expected_scales,
                                       actual_scales,
                                       delta=1e-2)
Example #9
0
def _build_faster_rcnn_model(frcnn_config, is_training):
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
    desired FasterRCNNMetaArch or RFCNMetaArch.
    is_training: True if this model is being built for training purposes.

  Returns:
    FasterRCNNMetaArch based on the config.
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

  feature_extractor = _build_faster_rcnn_feature_extractor(
      frcnn_config.feature_extractor, is_training)

  first_stage_only = frcnn_config.first_stage_only
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
  first_stage_box_predictor_arg_scope = hyperparams_builder.build(
      frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
  first_stage_positive_balance_fraction = (
      frcnn_config.first_stage_positive_balance_fraction)
  first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
  first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

  second_stage_box_predictor = box_predictor_builder.build(
      hyperparams_builder.build,
      frcnn_config.second_stage_box_predictor,
      is_training=is_training,
      num_classes=num_classes)
  second_stage_batch_size = frcnn_config.second_stage_batch_size
  second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
      'first_stage_only': first_stage_only,
      'first_stage_anchor_generator': first_stage_anchor_generator,
      'first_stage_atrous_rate': first_stage_atrous_rate,
      'first_stage_box_predictor_arg_scope':
      first_stage_box_predictor_arg_scope,
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
      'first_stage_positive_balance_fraction':
      first_stage_positive_balance_fraction,
      'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
      'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
      'second_stage_batch_size': second_stage_batch_size,
      'second_stage_balance_fraction': second_stage_balance_fraction,
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
      'second_stage_classification_loss':
      second_stage_classification_loss,
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
      'hard_example_miner': hard_example_miner}

  if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor):
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)