def predict(): if request.method == 'POST': file = request.files.get('file') if file is None or file.filename == "": return jsonify({'error': 'no file'}) if not allowed_file(file.filename): return jsonify({'error': 'format not supported'}) try: img_bytes = file.read() tensor = transform_image(img_bytes) prediction = get_prediction(tensor) data = {'prediction': prediction.item(), 'class_name': str(prediction.item())} return jsonify(data) except: return jsonify({'error': 'error during prediction'})
def predict(): if request.method == 'POST': file = request.files.get('file') if file is None or file.filename == "": return jsonify({'error': 'no file'}) if not allowed_file(file.filename): return jsonify({'error': 'format not supported'}) # try: img = Image.open(request.files['file']) img = torch.FloatTensor([process_image(img)]) pred = get_prediction(img) return jsonify(pred) # except: # return jsonify({'error': 'error during prediction'}) return jsonify({'result': 1})
def predick(): if request.method in ['POST', 'PUT']: file = request.files.get('file') if file is None or file.filename == "": return jsonify({'error': 'no file'}) if not allowed_file(file.filename): return jsonify({'error': 'format not supported'}) try: img_bytes = file.read() tensor = transform_image(img_bytes) prediction = get_prediction(tensor) probability = "{:.2%}".format(prediction[1].item()) data = {'prediction_id': prediction[0].item(), 'class_name': str(classes[prediction[0].item()]), 'probability': probability} return jsonify(data) except Exception as e: return jsonify({'error': str(e)})
def predict(): if request.method == 'POST': file = request.files.get('file') if file is None or file.filename=="": return jsonify({"error": "no file!"}) if not allowed_file(file.filename): return jsonify({"error": "format not supported"}) try: image_bytes = file.read() image_tensor = tranform_image(image_bytes) prediction = get_prediction(image_tensor) data = { "prediction": prediction.item(), "class_name": str(prediction.item()) } return jsonify(data) except: return jsonify({"error": "error during prediction"})
def main_post(): file = request.files.get("image") print("=" * 80) print(request.headers) print(list(request.files.keys())) print(list(request.form.keys())) if file is None or file.filename == "": return jsonify(dict(error="no file")) if not allowed_file(file.filename): return jsonify(dict(error="format not supported")) try: image_bytes = file.read() image_tensor = transform_image(image_bytes) probability, prediction = get_prediction(image_tensor) data = dict( probability=probability.item(), prediction=labels[str(prediction.item())] ) print(data) return jsonify(data) except: return jsonify(dict(error="error during prediction"))