class TrainModel:

    def __init__(self,run_id,data_path):
        self.run_id = run_id
        self.data_path = data_path
        self.logger = Logger(self.run_id, 'TrainModel', 'training')
        self.loadValidate = LoadValidate(self.run_id, self.data_path,'training')
        self.preProcess = Preprocessor(self.run_id, self.data_path,'training')
        self.modelTuner = ModelTuner(self.run_id, self.data_path, 'training')
        self.fileOperation = FileOperation(self.run_id, self.data_path, 'training')
        self.cluster = KMeansCluster(self.run_id, self.data_path)

    def training_model(self):
       
        try:
            self.logger.info('Start of Training')
            self.logger.info('Run_id:' + str(self.run_id))
            #Load, validations and transformation
            self.loadValidate.validate_trainset()
            #preprocessing activities
            self.X, self.y = self.preProcess.preprocess_trainset()
            columns = {"data_columns":[col for col in self.X.columns]}
            with open('apps/database/columns.json','w') as f:
                f.write(json.dumps(columns))
            #create clusters
            number_of_clusters = self.cluster.elbow_plot(self.X)
            # Divide the data into clusters
            self.X= self.cluster.create_clusters(self.X, number_of_clusters)
            # create a new column in the dataset consisting of the corresponding cluster assignments.
            self.X['Labels'] = self.y
            # getting the unique clusters from our data set
            list_of_clusters = self.X['Cluster'].unique()
            # parsing all the clusters and look for the best ML algorithm to fit on individual cluster
            for i in list_of_clusters:
                cluster_data=self.X[self.X['Cluster']==i] # filter the data for one cluster

                # Prepare the feature and Label columns
                cluster_features=cluster_data.drop(['Labels','Cluster'],axis=1)
                cluster_label= cluster_data['Labels']

                # splitting the data into training and test set for each cluster one by one
                x_train, x_test, y_train, y_test = train_test_split(cluster_features, cluster_label, test_size=0.2, random_state=0)
                #getting the best model for each of the clusters
                best_model_name, best_model = self.modelTuner.get_best_model(x_train, y_train, x_test, y_test)

                #saving the best model to the directory.
                save_model=self.fileOperation.save_model(best_model,best_model_name+str(i))


            self.logger.info('End of Training')
        except Exception:
            self.logger.exception('Unsuccessful End of Training')
            raise Exception
class TrainModel:
    """
    *****************************************************************************
    *
    * filename:       TrainModel.py
    * version:        1.0
    * author:
    * creation date:
    *
    *
    *
    *
    * description:    Class to training the models
    *
    ****************************************************************************
    """
    def __init__(self, run_id, data_path):
        self.run_id = run_id
        self.data_path = data_path
        self.logger = Logger(self.run_id, 'TrainModel', 'training')
        self.loadValidate = LoadValidate(self.run_id, self.data_path,
                                         'training')
        self.preProcess = Preprocessor(self.run_id, self.data_path, 'training')
        self.modelTuner = ModelTuner(self.run_id, self.data_path, 'training')
        self.fileOperation = FileOperation(self.run_id, self.data_path,
                                           'training')
        # self.cluster = KMeansCluster(self.run_id, self.data_path)

    def training_model(self):
        """
        * method: trainingModel
        * description: method to training the model
        * return: none
        *
        *
        * Parameters
        *   none:
        """
        try:
            self.logger.info('Start of Training')
            self.logger.info('Run_id:' + str(self.run_id))
            # Load, validations and transformation
            self.loadValidate.validate_trainset()
            # preprocessing activities
            self.X, self.y = self.preProcess.preprocess_trainset()
            columns = {"data_columns": [col for col in self.X.columns]}
            with open('apps/database/columns.json', 'w') as f:
                f.write(json.dumps(columns))

                # splitting the data into training and test set for each cluster one by one
                x_train, x_test, y_train, y_test = train_test_split(
                    self.X, self.y, test_size=0.2, random_state=0)
                # getting the best model for each of the clusters
                best_model_name, best_model = self.modelTuner.get_best_model(
                    x_train, y_train, x_test, y_test)

                # saving the best model to the directory.
                save_model = self.fileOperation.save_model(
                    best_model, best_model_name)

            self.logger.info('End of Training')
        except Exception:
            self.logger.exception('Unsuccessful End of Training')
            raise Exception
class KMeansCluster:
    def __init__(self, run_id, data_path):
        self.run_id = run_id
        self.data_path = data_path
        self.logger = Logger(self.run_id, 'KMeansCluster', 'training')
        self.fileOperation = FileOperation(self.run_id, self.data_path,
                                           'training')

    def elbow_plot(self, data):

        wcss = []  # initializing an empty list --within cluster sum of errors
        try:
            self.logger.info('Start of elbow plotting...')
            for i in range(1, 11):
                kmeans = KMeans(
                    n_clusters=i, init='k-means++',
                    random_state=0)  # initializing the KMeans object
                kmeans.fit(data)  # fitting the data to the KMeans Algorithm
                wcss.append(kmeans.inertia_)
            plt.plot(
                range(1, 11), wcss
            )  # creating the graph between WCSS and the number of clusters
            plt.title('The Elbow Method')
            plt.xlabel('Number of clusters')
            plt.ylabel('WCSS')
            #plt.show()
            plt.savefig('apps/models/kmeans_elbow.png'
                        )  # saving the elbow plot locally
            # finding the value of the optimum cluster programmatically
            self.kn = KneeLocator(range(1, 11),
                                  wcss,
                                  curve='convex',
                                  direction='decreasing')
            self.logger.info('The optimum number of clusters is: ' +
                             str(self.kn.knee))
            self.logger.info('End of elbow plotting...')
            return self.kn.knee

        except Exception as e:
            self.logger.exception('Exception raised while elbow plotting:' +
                                  str(e))
            raise Exception()

    def create_clusters(self, data, number_of_clusters):

        self.data = data
        try:
            self.logger.info('Start of Create clusters...')
            self.kmeans = KMeans(n_clusters=number_of_clusters,
                                 init='k-means++',
                                 random_state=0)
            self.y_kmeans = self.kmeans.fit_predict(
                data)  #  divide data into clusters
            self.saveModel = self.fileOperation.save_model(
                self.kmeans, 'KMeans')
            # saving the KMeans model to directory
            # passing 'Model' as the functions need three parameters
            self.data[
                'Cluster'] = self.y_kmeans  # create a new column in dataset for storing the cluster information
            self.logger.info('succesfully created ' + str(self.kn.knee) +
                             'clusters.')
            self.logger.info('End of Create clusters...')
            return self.data
        except Exception as e:
            self.logger.exception('Exception raised while Creating clusters:' +
                                  str(e))
            raise Exception()
Example #4
0
class KMeansCluster:
    """
    *****************************************************************************
    *
    * filename:       KMeansCluster.py
    * version:        1.0
    * author:         CODESTUDIO
    * creation date:  05-MAY-2020
    *
    * change history:
    *
    * who             when           version  change (include bug# if apply)
    * ----------      -----------    -------  ------------------------------
    * bcheekati       05-MAY-2020    1.0      initial creation
    *
    *
    * description:    Class to cluster the dataset
    *
    ****************************************************************************
    """
    def __init__(self, run_id, data_path):
        self.run_id = run_id
        self.data_path = data_path
        self.logger = Logger(self.run_id, 'KMeansCluster', 'training')
        self.fileOperation = FileOperation(self.run_id, self.data_path,
                                           'training')

    def elbow_plot(self, data):
        """
        * method: log
        * description: method to saves the plot to decide the optimum number of clusters to the file.
        * return: A picture saved to the directory
        *
        * who             when           version  change (include bug# if apply)
        * ----------      -----------    -------  ------------------------------
        * bcheekati       05-MAY-2020    1.0      initial creation
        *
        * Parameters
        *   data:
        """
        wcss = []  # initializing an empty list --within cluster sum of errors
        try:
            self.logger.info('Start of elbow plotting...')
            for i in range(1, 11):
                kmeans = KMeans(
                    n_clusters=i, init='k-means++',
                    random_state=0)  # initializing the KMeans object
                kmeans.fit(data)  # fitting the data to the KMeans Algorithm
                wcss.append(kmeans.inertia_)
            plt.plot(
                range(1, 11), wcss
            )  # creating the graph between WCSS and the number of clusters
            plt.title('The Elbow Method')
            plt.xlabel('Number of clusters')
            plt.ylabel('WCSS')
            #plt.show()
            plt.savefig('apps/models/kmeans_elbow.png'
                        )  # saving the elbow plot locally
            # finding the value of the optimum cluster programmatically
            self.kn = KneeLocator(range(1, 11),
                                  wcss,
                                  curve='convex',
                                  direction='decreasing')
            self.logger.info('The optimum number of clusters is: ' +
                             str(self.kn.knee))
            self.logger.info('End of elbow plotting...')
            return self.kn.knee

        except Exception as e:
            self.logger.exception('Exception raised while elbow plotting:' +
                                  str(e))
            raise Exception()

    def create_clusters(self, data, number_of_clusters):
        """
        * method: create_clusters
        * description: method to create clusters
        * return: A date frame with cluster column
        *
        * who             when           version  change (include bug# if apply)
        * ----------      -----------    -------  ------------------------------
        * bcheekati       05-MAY-2020    1.0      initial creation
        *
        * Parameters
        *   data:
        *   number_of_clusters:
        """
        self.data = data
        try:
            self.logger.info('Start of Create clusters...')
            self.kmeans = KMeans(n_clusters=number_of_clusters,
                                 init='k-means++',
                                 random_state=0)
            self.y_kmeans = self.kmeans.fit_predict(
                data)  #  divide data into clusters
            self.saveModel = self.fileOperation.save_model(
                self.kmeans, 'KMeans')
            # saving the KMeans model to directory
            # passing 'Model' as the functions need three parameters
            self.data[
                'Cluster'] = self.y_kmeans  # create a new column in dataset for storing the cluster information
            self.logger.info('succesfully created ' + str(self.kn.knee) +
                             'clusters.')
            self.logger.info('End of Create clusters...')
            return self.data
        except Exception as e:
            self.logger.exception('Exception raised while Creating clusters:' +
                                  str(e))
            raise Exception()