def recap_world(dt, previous): previous = (pd.to_datetime(dt, dayfirst=True) - pd.to_datetime(previous, dayfirst=True)).days if dt == time.strftime('%d/%m/%Y'): dt = (datetime.now() - timedelta(1)).strftime('%d/%m/%Y') df_recap = GetData.get_recap_by_country(dt, previous=int(previous)) df_confirmed = GetData.get_world('confirmed') confirmed = df_confirmed.iloc[:, -1].sum() confirmedp = df_recap['Cases (+)'].sum(axis=0) df_deaths = GetData.get_world('deaths') deaths = df_deaths.iloc[:, -1].sum() deathsp = df_recap['Deaths (+)'].sum(axis=0) df_recovered = GetData.get_world('recovered') recovered = df_recovered.iloc[:, -1].sum() recoveredp = df_recap['Recovered (+)'].sum(axis=0) france_casesp = f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="France"]):,}' france_casesp2 = "{0}".format(france_casesp) us_cases = f'{int(df_recap["Cases"][df_recap["Country/Region"]=="US"]):,}' us_casesp = f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="US"]):,}' france_cases = f'{int(df_recap["Cases"][df_recap["Country/Region"]=="France"]):,}' italy_cases = f'{int(df_recap["Cases"][df_recap["Country/Region"]=="Italy"]):,}' italy_casesp = f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="Italy"]):,}' germany_cases = f'{int(df_recap["Cases"][df_recap["Country/Region"]=="Germany"]):,}' germany_casesp = f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="Germany"]):,}' china_cases = f'{int(df_recap["Cases"][df_recap["Country/Region"]=="China"]):,}' china_casesp = f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="China"]):,}' spain_cases = f'{int(df_recap["Cases"][df_recap["Country/Region"]=="Spain"]):,}' spain_casesp = f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="Spain"]):,}' return '{:,}'.format(confirmed),'(+ {:,})'.format(confirmedp),'{:,}'.format(deaths),'(+ {:,})'.format(deathsp),'{:,}'.format(recovered),'(+ {:,})'.format(recoveredp),\ 'Mise à jour le {} (+ Variations sur les {} derniers jours)'.format(pd.to_datetime(dt).strftime('%d/%m/%Y'),previous),'{:,}'.format(previous),'{:,}'.format(recoveredp),'{}'.format(france_casesp2),\ '{}'.format(china_cases),'(+ {})'.format(china_casesp),'{}'.format(italy_cases),'(+ {})'.format(italy_casesp),'{}'.format(germany_cases),'(+ {})'.format(germany_casesp),\ '{}'.format(spain_cases),'(+ {})'.format(spain_casesp),'{}'.format(us_cases),'(+ {})'.format(us_casesp),'{}'.format(france_cases),'(+ {})'.format(france_casesp2)
def get_top3_country(name): index_top3 = GetData.get_world(name).groupby('Country/Region').sum().iloc[:,2:].T.iloc[-1].sort_values(ascending = False).index[0:3].values df_confirmed_world = GetData.get_world('confirmed').groupby('Country/Region').sum().iloc[:,2:].T df_deaths_world = GetData.get_world('deaths').groupby('Country/Region').sum().iloc[:,2:].T df_recovered_world = GetData.get_world('recovered').groupby('Country/Region').sum().iloc[:,2:].T df = pd.DataFrame() df['Confirmed'] = df_confirmed_world[index_top3].iloc[-1,:] df['Recovered'] = df_recovered_world[index_top3].iloc[-1,:] df['Deaths'] = df_deaths_world[index_top3].iloc[-1,:] return df
def recap_table(dt=dt,previous=5): df_recap=GetData.get_recap_by_country(dt,previous=previous) columns = ['Pays','Nouveaux Cas','Total des cas','Total décès','Nouveau décès','Mortalité','Rétabli'] df_H5=pd.DataFrame(columns=columns) df_H5["Pays"]=x = ['{0}'.format(i) for i in df_recap["Country/Region"]] df_H5["Total des cas"]=df_recap["Cases"] df_H5["Total décès"]=df_recap["Deaths"] df_H5["Mortalité"]=df_H5["Total décès"]/df_H5["Total des cas"] df_H5["Total décès"]=df_recap["Deaths"] df_H5["Rétabli"]=df_recap["Recovered"] df_H5["Nouveaux cas"]=[f'{i:,}'for i in df_recap["Cases (+)"]] df_H5["Nouveaux cas"]=["(+{0})".format(str(i)) for i in df_H5["Nouveaux cas"]] df_H5["Nouveau décès"]=[f'{i:,}'for i in df_recap['Deaths (+)']] df_H5["Nouveau décès"]=["(+{0})".format(str(i)) for i in df_H5["Nouveau décès"]] df_H5["Mortalité"]=["{:.2%}".format(i) for i in df_H5["Mortalité"]] df_H5["Rétabli"]=[f'{i:,}'for i in df_H5["Rétabli"]] df_H5["Total des cas"]=[f'{i:,}'for i in df_H5["Total des cas"]] df_H5["Total décès"]=[f'{i:,}'for i in df_H5["Total décès"]] rows =[] for index,row in df_H5.head(10).iterrows(): rows.append(html.Tr([html.Td(row.Pays,style={'font-weight':'bold','text-align':'center'}), html.Td(row['Total des cas']),html.Td(row['Total décès']),html.Td(row['Mortalité'])],style={ 'border-bottom':'1px solid #e8e8e8' })) return [ html.Thead([ html.Tr( [ html.Th( 'COuntry',style={'text-align':'center','width':'180px'} ), html.Th( 'CASES',style ={ 'text-align':'center', } ), html.Th( 'DEATHS',style={ 'text-align':'center', } ), html.Th( 'MORTALITY',style={ 'text-align':'center', } ), ], style = { 'border-bottom': '2px solid', 'text-transform':'uppercase', "font-size":"14px" } ) ]), html.Tbody( rows ) ]
def updatelabel3(valued,valuep): previous=int(valuep) date=valued df_recap=GetData.get_recap_by_country(date,previous=previous) deathsp=df_recap['Deaths (+)'].sum(axis=0) france_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="France"]):,}' france_deathsp2="{0}".format(france_deathsp) return "In the last **{0}** days, **{1}** new Coronavirus deaths have been \ reported worldwide. Of which **{2}** are from France.".format(\ previous, deathsp, france_deathsp2)
def updatelabel2(valued,valuep): previous=int(valuep) date=valued df_recap=GetData.get_recap_by_country(date,previous=previous) #Récupération des cas confirmés confirmedp=df_recap['Cases (+)'].sum(axis=0) france_casesp=f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="France"]):,}' france_casesp2="{0}".format(france_casesp) return "In the last **{0}** days, **{1}** new Coronavirus cases have been \ reported worldwide. Of which **{2}** are from France.".format(\ valuep, confirmedp, france_casesp2)
def recap_table(dt, previous): previous = (pd.to_datetime(dt, dayfirst=True) - pd.to_datetime(previous, dayfirst=True)).days df_recap = GetData.get_recap_by_country(dt, previous=previous) columns = [ 'Pays', 'Nouveaux Cas', 'Total des cas', 'Total décès', 'Nouveau décès', 'Mortalité', 'Rétabli' ] df_H5 = pd.DataFrame(columns=columns) df_H5["Pays"] = x = ['{0}'.format(i) for i in df_recap["Country/Region"]] df_H5["Total des cas"] = df_recap["Cases"] df_H5["Total décès"] = df_recap["Deaths"] df_H5["Mortalité"] = df_H5["Total décès"] / df_H5["Total des cas"] df_H5["Total décès"] = df_recap["Deaths"] df_H5["Rétabli"] = df_recap["Recovered"] df_H5["Nouveaux cas"] = [f'{i:,}' for i in df_recap["Cases (+)"]] df_H5["Nouveaux cas"] = [ "(+{0})".format(str(i)) for i in df_H5["Nouveaux cas"] ] df_H5["Nouveau décès"] = [f'{i:,}' for i in df_recap['Deaths (+)']] df_H5["Nouveau décès"] = [ "(+{0})".format(str(i)) for i in df_H5["Nouveau décès"] ] df_H5["Mortalité"] = ["{:.2%}".format(i) for i in df_H5["Mortalité"]] df_H5["Rétabli"] = [f'{i:,}' for i in df_H5["Rétabli"]] df_H5["Total des cas"] = [f'{i:,}' for i in df_H5["Total des cas"]] df_H5["Total décès"] = [f'{i:,}' for i in df_H5["Total décès"]] rows = [] for index, row in df_H5.iterrows(): rows.append( html.Tr([ html.Td(row.Pays, style={ 'font-weight': 'bold', 'text-align': 'right' }), html.Td(make_bars(row.Pays), style={'vertical-align': 'middle'}), html.Td(row['Total des cas'], style={'font-weight': 'bolder'}), html.Td(row['Nouveaux cas'], style=CSS['danger']), html.Td(row['Total décès']), html.Td(row['Nouveau décès'], style=CSS['danger']), html.Td(row['Mortalité']), html.Td(row['Rétabli']) ], style={'border-bottom': '1px solid #e8e8e8'})) return [ html.Thead([ html.Tr([ html.Th(children='', style={'width': '150px'}), html.Th( [ html.Div(children='10', style={ "width": "27px", "height": "15px", "font-size": "8px" }), html.Div(children='100', style={ "width": "27px", "height": "15px", "font-size": "8px" }), html.Div(children='1000', style={ "width": "27px", "height": "15px", "font-size": "8px" }), ], style={ 'width': '170px', "height": "15px", 'vertical-align': 'middle', "display": "flex", "margin-left": "85px" }), html.Th() ]), html.Tr([ html.Th(children='', style={'width': '150px'}), html.Th( [ html.Div(children='', style={ "background": "rgba(255, 152, 0,0.1)", "width": "27px", "height": "15px" }), html.Div(children='', style={ "background": "rgba(255, 152, 0,0.4)", "width": "27px", "height": "15px" }), html.Div(children='', style={ "background": "rgba(255, 152, 0,0.7)", "width": "27px", "height": "15px" }), html.Div(children='', style={ "background": "rgba(255, 152, 1)", "width": "27px", "height": "15px" }), ], style={ 'width': '170px', "height": "15px", 'vertical-align': 'middle', "display": "flex", "margin-left": "50px" }), html.Th() ]), html.Tr( [ html.Th('Pays', style={ 'text-align': 'right', 'width': '180px' }), html.Th('Evolution des cas', style={ 'text-align': 'center', 'width': '170px' }), html.Th('Total des cas', style={ 'text-align': 'center', 'width': '250px' }), html.Th('Nouveaux cas', style={ 'text-align': 'center', 'width': '250px' }), html.Th('Total décès', style={ 'text-align': 'center', 'width': '250px' }), html.Th('Nouveaux décès', style={ 'text-align': 'center', 'width': '300px' }), html.Th('Mortalité', style={ 'text-align': 'center', 'width': '200px' }), html.Th('Rétablis', style={ 'text-align': 'center', 'width': '200px' }) ], style={ 'border-bottom': '2px solid', 'text-transform': 'uppercase', "font-size": "14px" }) ]), html.Tbody([ html.Tr([ html.Td(), html.Td( [html.Div('22 Janvier'), html.Div("Aujourd'hui")], style={ 'display': 'flex', 'justify-content': 'space-between', 'font-size': '9px' }), html.Td(), html.Td('( + NOUVEAU ) depuis le {}'.format( (pd.to_datetime(dt, dayfirst=True) - timedelta(previous)).strftime('%d/%m/%Y')), style={ "font-size": "9px", 'color': '#999', 'text-align': 'left' }), html.Td(), html.Td() ]) ] + rows) ]
import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd from apps import GetData from apps import graph import dash_bootstrap_components as dbc import numpy as np import pandas as pd import plotly.graph_objects as go import time from app import app from dash.dependencies import Input, Output from datetime import datetime, timedelta app.title = 'CoronaRecap' df = GetData.get_world('confirmed') def make_bars(country, df=df): t = df[(df['Country/Region'] == country)].groupby('Country/Region').sum() lst = [ list(t[col].values)[0] for col in t.columns if col not in ['Continent', 'Country/Region', 'Province/State', 'Lat', 'Long'] ] variation = [lst[i] - lst[i - 1] for i in range(1, len(lst))] color = { '0': { 'border-right': '1px solid rgba(255,255,255,0.5)', 'width': '3px', },
).iloc[:, 2:].T.iloc[-1].sort_values(ascending=False).index[0:3].values df_confirmed_world = GetData.get_world('confirmed').groupby( 'Country/Region').sum().iloc[:, 2:].T df_deaths_world = GetData.get_world('deaths').groupby( 'Country/Region').sum().iloc[:, 2:].T df_recovered_world = GetData.get_world('recovered').groupby( 'Country/Region').sum().iloc[:, 2:].T df = pd.DataFrame() df['Confirmed'] = df_confirmed_world[index_top3].iloc[-1, :] df['Recovered'] = df_recovered_world[index_top3].iloc[-1, :] df['Deaths'] = df_deaths_world[index_top3].iloc[-1, :] return df top3 = get_top3_country('confirmed') df = GetData.get_world('confirmed') def make_bars(country, df=df): t = df[(df['Country/Region'] == country)].groupby('Country/Region').sum() lst = [ list(t[col].values)[0] for col in t.columns if col not in ['Continent', 'Country/Region', 'Province/State', 'Lat', 'Long'] ] variation = [lst[i] - lst[i - 1] for i in range(1, len(lst))] color = { '0': { 'border-right': '1px solid rgba(255,255,255,0.5)', 'width': '3px', },
from dash.dependencies import Input, Output, State import numpy as np import pandas as pd from datetime import datetime from pytrends.request import TrendReq import plotly.graph_objects as go from plotly.offline import plot from app import app from apps import GetData from apps import sidebar import yfinance as yf import plotly.express as px df_confirmed_world = GetData.get_world('confirmed') df_deaths_world = GetData.get_world('deaths') df = pd.DataFrame() df['Date'] = pd.to_datetime(df_confirmed_world.iloc[:,5:].columns) df['Confirmed'] = df_confirmed_world.iloc[:,5:].sum().values df['Deaths'] = df_deaths_world.iloc[:,5:].sum().values df.set_index('Date', inplace = True) list_tickers = ['^FCHI', '^GSPC', '^DJI', '^GDAXI', '^IXIC', '^N225', '^HSI', '^IBEX', 'BTC-USD', 'ETHUSD=X', 'EURUSD=X', 'EURGBP=X', 'EURJPY=X', 'EURCNY=X', 'EURCHF=X', 'HG=F', 'EH=F', 'GC=F', 'NG=F', 'CL=F', 'PL=F', 'SI=F'] title = ['CAC40', 'SP500', 'Dow Jones', 'Dax', 'Nasdaq', 'Nikkei', 'Hangseng', 'Ibex', 'BTC/USD', 'ETH/USD', 'EUR/USD', 'EUR/GBP', 'EUR/JPY', 'EUR/CNY', 'EUR/CHF', 'Copper', 'Ethanol', 'Gold', 'Natural Gas', 'Oil', 'Platinum', 'Silver'] title = np.array(title)
def updatefigure3(valued,valuep): previous=int(valuep) date=valued df_recap=GetData.get_recap_by_country(date,previous=previous) fill_color_H2='lightgray' line_color_H2='lightgray' font_color_H2=[['black','red']] font_size_H2=[12,11,11,11,11,11,11] columns_=["Country", "New Cases", "Total Cases","New Deaths","Total Deaths","Fatality", "Recovered"] columns_=['<b>{0}</b>'.format(i) for i in columns_] df_H5=pd.DataFrame(columns=["Country", "New Cases", "Total Cases","New Deaths","Total Deaths","Fatality", "Recovered"]) df_H5["Country"]=x = ['<b>{0}</b>'.format(i) for i in df_recap["Country/Region"]] df_H5["Total Cases"]=df_recap["Cases"] df_H5["Total Deaths"]=df_recap["Deaths"] df_H5["Fatality"]=df_H5["Total Deaths"]/df_H5["Total Cases"] df_H5["Total Deaths"]=df_recap["Deaths"] df_H5["Recovered"]=df_recap["Recovered"] df_H5["New Cases"]=[f'{i:,}'for i in df_recap["Cases (+)"]] df_H5["New Cases"]=["(+{0})".format(str(i)) for i in df_H5["New Cases"]] df_H5["New Deaths"]=[f'{i:,}'for i in df_recap['Deaths (+)']] df_H5["New Deaths"]=["(+{0})".format(str(i)) for i in df_H5["New Deaths"]] df_H5["Fatality"]=["{:.2%}".format(i) for i in df_H5["Fatality"]] df_H5["Recovered"]=[f'{i:,}'for i in df_H5["Recovered"]] df_H5["Total Cases"]=[f'{i:,}'for i in df_H5["Total Cases"]] df_H5["Total Deaths"]=[f'{i:,}'for i in df_H5["Total Deaths"]] font_color_H5=['black','red','black','red','black','red','black'] fig_H5 = go.Figure(go.Table( header=dict(values=list(columns_), align ='center', font=dict(color='black',size=12), line_color=line_color_H2, fill_color=fill_color_H2), cells=dict(values=[df_H5.Country, df_H5["New Cases"],df_H5["Total Cases"]\ , df_H5["New Deaths"], df_H5["Total Deaths"],\ df_H5.Fatality, df_H5.Recovered], font_size=font_size_H2,font_color=font_color_H5, line_color=line_color_H2,fill_color=fill_color_H2))) fig_H5.update_layout( autosize=False, width=1000, height=400, margin=dict( l=300, r=20, b=100, t=50, pad=400 ), title_text="<b>BY COUNTRY</b>",title_x=0.63, title_font_color='black' ) return fig_H5
def updatefigure3(valued,valuep): previous=int(valuep) date=valued df_recap=GetData.get_recap_by_country(date,previous=previous) fill_color_H2='lightgray' line_color_H2='lightgray' font_color_H2=[['black','red']] #USA us_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="US"]):,}' us_deaths="<b>{0}</b>".format(us_deaths) us_casesp=f'{int(df_recap["Cases (+)"][df_recap["Country/Region"]=="US"]):,}' us_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="US"]):,}' us_casesp="<b>(+{0})</b>".format(us_casesp) us_deathsp="<b>(+{0})</b>".format(us_deathsp) #France france_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="France"]):,}' france_deaths="<b>{0}</b>".format(france_deaths) france_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="France"]):,}' france_deathsp="<b>(+{0})</b>".format(france_deathsp) #Italy italy_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="Italy"]):,}' italy_deaths="<b>{0}</b>".format(italy_deaths) italy_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="Italy"]):,}' italy_deathsp="<b>(+{0})</b>".format(italy_deathsp) #Germany germany_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="Germany"]):,}' germany_deaths="<b>{0}</b>".format(germany_deaths) germany_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="Germany"]):,}' germany_deathsp="<b>(+{0})</b>".format(germany_deathsp) #China china_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="China"]):,}' china_deaths="<b>{0}</b>".format(china_deaths) china_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="China"]):,}' china_deathsp="<b>(+{0})</b>".format(china_deathsp) #Spain spain_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="Spain"]):,}' spain_deaths="<b>{0}</b>".format(spain_deaths) spain_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="Spain"]):,}' spain_deathsp="<b>(+{0})</b>".format(spain_deathsp) #Iran iran_deaths=f'{int(df_recap["Deaths"][df_recap["Country/Region"]=="Iran"]):,}' iran_deaths="<b>{0}</b>".format(iran_deaths) iran_deathsp=f'{int(df_recap["Deaths (+)"][df_recap["Country/Region"]=="Iran"]):,}' iran_deathsp="<b>(+{0})</b>".format(iran_deathsp) values_H4=[[china_deaths,china_deathsp],[france_deaths,france_deathsp],\ [germany_deaths,germany_deathsp],[us_deaths,us_deathsp],\ [spain_deaths,spain_deathsp], [iran_deaths,iran_deathsp],\ [italy_deaths,italy_deathsp]] fig_H4= go.Figure(data=[go.Table( header=dict(values=["China","France", "Germany"\ ,"US","Spain","Iran"\ ,"Italy"] , line_color=line_color_H2,fill_color=fill_color_H2, align='center',font=dict(color='black', size=10) ), cells=dict( line_color=line_color_H2,fill_color=fill_color_H2,font_color=font_color_H2, values=values_H4, font_size=13 )) ]) fig_H4.update_layout( autosize=False, width=1000, height=170, margin=dict( l=300, r=20, b=0, t=40, pad=20 ), title_text="<b>DEATHS</b>",title_x=0.63, title_font_color='black' ) return fig_H4
def updatefigure1(valued,valuep): previous=int(valuep) date=valued df_recap=GetData.get_recap_by_country(date,previous=previous) #Récupération des cas confirmés df_confirmed=GetData.get_world('confirmed') confirmed=df_confirmed.iloc[:,5:].sum(axis=1).sum(axis=0) confirmedp=df_recap['Cases (+)'].sum(axis=0) #Récupération des cas morts df_deaths=GetData.get_world('deaths') deaths=df_deaths.iloc[:,5:].sum(axis=1).sum(axis=0) deathsp=df_recap['Deaths (+)'].sum(axis=0) #Récupération des cas guéris df_recovered=GetData.get_world('recovered') recovered=df_recovered.iloc[:,5:].sum(axis=1).sum(axis=0) recoveredp=df_recap['Recovered (+)'].sum(axis=0) confirmed=f'{confirmed:,}' deaths=f'{deaths:,}' recovered=f'{recovered:,}' confirmedp=f'{confirmedp:,}' deathsp=f'{deathsp:,}' recoveredp=f'{recoveredp:,}' a="<b>{0}</b>".format(confirmed) b="<b>{0}</b>".format(deaths) c="<b>{0}</b>".format(recovered) e="<b>(+{0})</b>".format(confirmedp) f="<b>(+{0})</b>".format(deathsp) g="<b>(+{0})</b>".format(recoveredp) #CSS fill_color_H2='lightgray' line_color_H2='lightgray' font_color_H2=[['black','red']] font_size_H2=[15] #layout = go.Layout( autosize=True, **margin={'l': 0, 'r': 0, 't': 20, 'b': 0}**) fig_H2= go.Figure(data=[go.Table( header=dict(values=["Confirmed Cases","Deaths", "Recovered"] , line_color=line_color_H2,fill_color=fill_color_H2, align='center',font=dict(color='black', size=10) ), cells=dict( values=[[a,e],[b,f], [c,g]],align='center', line_color=line_color_H2, fill_color=fill_color_H2, font_color=font_color_H2, font_size=font_size_H2 )) ]) fig_H2.update_layout( autosize=False, width=500, height=170, margin=dict( l=20, r=20, b=20, t=50, pad=10 ), title_text="<b>WORLD</b>",title_x=0.5, title_font_color='black' ) return fig_H2
href="/"), dbc.NavbarToggler(id="navbar-toggler2"), dbc.Nav( [ dbc.NavItem(dbc.NavLink("Récapitulatif",href="/")), dbc.NavItem(dbc.NavLink("Simulateur",href="/simulation")), ],className="ml-auto",navbar=True ) ], color="dark", dark=True, ) df=GetData.get_recap_by_country("20/03/2020",10) style_H1 ={"display": "block", "margin-left": "auto", "margin-right": "auto",'textAlign': 'center'} style_label = {"display": "block", "margin-left": "auto", "margin-right": "auto",'textAlign': 'center', 'color':'black'} style_phraseH5 = {'color': 'black', 'textAlign': 'center',\ 'margin-bottom':'0px','margin-top': '0px' } style_fig_H2={ 'height': 152,
import pandas as pd from apps import GetData from apps import graph import dash_bootstrap_components as dbc import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import time from app import app from dash.dependencies import Input, Output from datetime import datetime, timedelta import yfinance as yf ### PLOT df_confirmed_world = GetData.get_world('confirmed') df = pd.DataFrame() df['Date'] = pd.to_datetime(df_confirmed_world.iloc[:, 5:].columns) df['Confirmed_World'] = df_confirmed_world.iloc[:, 5:].sum().values df.set_index('Date', inplace=True) list_tickers = [ '^FCHI', '^GSPC', '^DJI', '^GDAXI', '^IXIC', '^N225', '^HSI', '^IBEX', 'BTC-USD', 'ETHUSD=X', 'EURUSD=X', 'EURGBP=X', 'EURJPY=X', 'EURCNY=X', 'EURCHF=X', 'HG=F', 'EH=F', 'GC=F', 'NG=F', 'CL=F', 'PL=F', 'SI=F' ] title = [ 'CAC40', 'SP500', 'Dow Jones', 'Dax', 'Nasdaq', 'Nikkei', 'Hangseng', 'Ibex', 'BTC/USD', 'ETH/USD', 'EUR/USD', 'EUR/GBP', 'EUR/JPY', 'EUR/CNY', 'EUR/CHF', 'Copper', 'Ethanol', 'Gold', 'Natural Gas', 'Oil', 'Platinum', 'Silver'
} } #FCT def get_top3_country(name): index_top3 = GetData.get_world(name).groupby('Country/Region').sum().iloc[:,2:].T.iloc[-1].sort_values(ascending = False).index[0:3].values df_confirmed_world = GetData.get_world('confirmed').groupby('Country/Region').sum().iloc[:,2:].T df_deaths_world = GetData.get_world('deaths').groupby('Country/Region').sum().iloc[:,2:].T df_recovered_world = GetData.get_world('recovered').groupby('Country/Region').sum().iloc[:,2:].T df = pd.DataFrame() df['Confirmed'] = df_confirmed_world[index_top3].iloc[-1,:] df['Recovered'] = df_recovered_world[index_top3].iloc[-1,:] df['Deaths'] = df_deaths_world[index_top3].iloc[-1,:] return df top3 = get_top3_country('confirmed') df =GetData.get_world('confirmed') def make_bars(country,df = df): t =df[(df['Country/Region'] == country)].groupby('Country/Region').sum() lst= [list(t[col].values)[0] for col in t.columns if col not in ['Continent','Country/Region','Province/State','Lat','Long']] variation = [lst[i] - lst[i-1] for i in range(1,len(lst))] color = { '0':{ 'border-right':'1px solid rgba(255,255,255,0.5)', 'width':'3px', }, '1-10':{ 'background':'rgba(255, 152, 0, 0.1)', 'border-right':'1px solid rgba(255,255,255,0.5)', 'width':'3px', },
import plotly.graph_objects as go from apps import GetData import pandas as pd import plotly.graph_objects as go from plotly.colors import n_colors import numpy as np import chart_studio.plotly as py #Récupération du récap date = "20/03/2020" previous = 5 df_recap = GetData.get_recap_by_country(date, previous=previous) #Récupération des cas confirmés df_confirmed = GetData.get_world('confirmed') confirmed = df_confirmed.iloc[:, 5:].sum(axis=1).sum(axis=0) confirmedp = df_recap['Cases (+)'].sum(axis=0) #Récupération des cas morts df_deaths = GetData.get_world('deaths') deaths = df_deaths.iloc[:, 5:].sum(axis=1).sum(axis=0) deathsp = df_recap['Deaths (+)'].sum(axis=0) #Récupération des cas guéris df_recovered = GetData.get_world('recovered') recovered = df_recovered.iloc[:, 5:].sum(axis=1).sum(axis=0) recoveredp = df_recap['Recovered (+)'].sum(axis=0) df_H2 = pd.DataFrame([[confirmed, deaths, recovered]], columns=["Confirmed Cases", "Deaths", "Recovered"]) confirmed = f'{confirmed:,}' deaths = f'{deaths:,}'