Example #1
0
def _evaluate(params):
    e, base, heuristic, strategy = params

    session = Session(get_engine())
    model = session.query(Model).filter_by(file_name=e.model_file.name).first()
    session.close()

    # Generate evaluation frames
    y_pred = e.binarizer.binarize(base=base, heuristic=heuristic, strategy=strategy, go_backwards=False)
    y_true = e.binarizer.get_targets()

    evaluations = []
    for axis in [0, 1, 2]:
        for i, attribute_name in enumerate(e.dataset.attribute_keys):
            def get_evaluation(label, precision, recall, f1):
                return Evaluation(model_id=model.id, file_name=model.file_name,
                                  label=label, perspective=perspective, attribute_name=attribute_name,
                                  axis=axis, base=base, heuristic=heuristic, strategy=strategy,
                                  precision=precision, recall=recall, f1=f1)

            perspective = 'Control Flow' if i == 0 else 'Data'
            if i > 0  and not e.ad_.supports_attributes:
                evaluations.append(get_evaluation('Normal', 0.0, 0.0, 0.0))
                evaluations.append(get_evaluation('Anomaly', 0.0, 0.0, 0.0))
            else:
                yp = label_collapse(y_pred[:, :, i:i + 1], axis=axis).compressed()
                yt = label_collapse(y_true[:, :, i:i + 1], axis=axis).compressed()
                p, r, f, _ = metrics.precision_recall_fscore_support(yt, yp, labels=[0, 1])
                evaluations.append(get_evaluation('Normal', p[0], r[0], f[0]))
                evaluations.append(get_evaluation('Anomaly', p[1], r[1], f[1]))

    return evaluations
Example #2
0
def fit_and_save(dataset_name, ad, ad_kwargs=None, fit_kwargs=None):
    if ad_kwargs is None:
        ad_kwargs = {}
    if fit_kwargs is None:
        fit_kwargs = {}

    # Save start time
    start_time = arrow.now()

    # Dataset
    dataset = Dataset(dataset_name)

    # AD
    ad = ad(**ad_kwargs)

    # Train and save
    ad.fit(dataset, **fit_kwargs)
    file_name = f'{dataset_name}_{ad.abbreviation}_{start_time.format(DATE_FORMAT)}'
    model_file = ad.save(file_name)

    # Save end time
    end_time = arrow.now()

    # Cache result
    #print(model_file.str_path)
    Evaluator(model_file.str_path).cache_result()

    # Calculate training time in seconds
    training_time = (end_time - start_time).total_seconds()

    # Write to database
    engine = get_engine()
    session = Session(engine)

    session.add(
        Model(creation_date=end_time.datetime,
              algorithm=ad.name,
              training_duration=training_time,
              file_name=model_file.file,
              training_event_log_id=EventLog.get_id_by_name(dataset_name),
              training_host=socket.gethostname(),
              hyperparameters=str(dict(**ad_kwargs, **fit_kwargs))))
    session.commit()
    session.close()

    if isinstance(ad, NNAnomalyDetector):
        from keras.backend import clear_session
        clear_session()
Example #3
0
        if base is not None and base not in e.ad_.supported_bases:
            continue
        _params.append([e, base, heuristic, strategy])

    return [_e for p in _params for _e in _evaluate(p)]


models = sorted([m.name for m in get_model_files()])

evaluations = []
for i in range(len(models)):
    e = evaluate(models[i])
    evaluations.append(e)

# Write to database
session = Session(get_engine())
for e in evaluations:
    session.bulk_save_objects(e)
    session.commit()
session.close()

out_dir = PLOT_DIR / 'isj-2019'
eval_file = out_dir / 'eval.pkl'

session = Session(get_engine())
evaluations = session.query(Evaluation).all()
rows = []
for ev in tqdm(evaluations):
    m = ev.model
    el = ev.model.training_event_log
    rows.append([