Example #1
0
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1):
    """ Get information on plane/sphere collision.
    
    :param H_g0: pose of the center of the plane relative to the ground
    :type  H_g0: (4,4)-array
    :param coeffs0: coefficients from the plane equation
    :type  coeffs0: (4,)-array
    :param p_g1: position of center of the sphere relative to the ground
    :type  p_g1: (3,)-array
    :param float radius1: radius of the sphere
    :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with:

            * *sdist*: the minimal distance between the plane and the sphere
            * *H_gc0*: the pose from the ground to the closest contact point on plane 0 (normal along z)
            * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z)

    .. image:: img/plane_sphere_collision.svg
       :width: 300px

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> coeffs0 = array([0., 1., 0., -5.])
    >>> r1 = 0.1
    >>> p_g1 = array([2., 4., 3.])
    >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1)
    >>> print sdist
    8.9
    >>> print H_gc0
    [[ 0.  1.  0.  2.]
     [-0.  0.  1. -5.]
     [ 1. -0.  0.  3.]
     [ 0.  0.  0.  1.]]
    >>> print H_gc1
    [[ 0.   1.   0.   2. ]
     [-0.   0.   1.   3.9]
     [ 1.  -0.   0.   3. ]
     [ 0.   0.   0.   1. ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    assert norm(coeffs0[0:3]) == 1.
    assert radius1 >= 0.
    normal = coeffs0[0:3]  # the plane normal
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    csdist = dot(normal, p_01) - coeffs0[3]  # signed distance from the center
    sdist = csdist - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc0[0:3, 3] = p_01 - csdist * normal
    H_gc1 = H_gc0.copy()
    H_gc1[0:3, 3] = p_01 - sign(sdist) * radius1 * normal
    return (sdist, H_gc0, H_gc1)
Example #2
0
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1):
    """ Get information on plane/sphere collision.
    
    :param H_g0: pose of the center of the plane relative to the ground
    :type  H_g0: (4,4)-array
    :param coeffs0: coefficients from the plane equation
    :type  coeffs0: (4,)-array
    :param p_g1: position of center of the sphere relative to the ground
    :type  p_g1: (3,)-array
    :param float radius1: radius of the sphere
    :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with:

            * *sdist*: the minimal distance between the plane and the sphere
            * *H_gc0*: the pose from the ground to the closest contact point on plane 0 (normal along z)
            * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z)

    .. image:: img/plane_sphere_collision.svg
       :width: 300px

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> coeffs0 = array([0., 1., 0., -5.])
    >>> r1 = 0.1
    >>> p_g1 = array([2., 4., 3.])
    >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1)
    >>> print sdist
    8.9
    >>> print H_gc0
    [[ 0.  1.  0.  2.]
     [-0.  0.  1. -5.]
     [ 1. -0.  0.  3.]
     [ 0.  0.  0.  1.]]
    >>> print H_gc1
    [[ 0.   1.   0.   2. ]
     [-0.   0.   1.   3.9]
     [ 1.  -0.   0.   3. ]
     [ 0.   0.   0.   1. ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    assert norm(coeffs0[0:3]) == 1.
    assert radius1 >= 0.
    normal = coeffs0[0:3] # the plane normal
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    csdist = dot(normal, p_01) - coeffs0[3] # signed distance from the center
    sdist = csdist - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc0[0:3, 3] = p_01 - csdist * normal
    H_gc1 = H_gc0.copy()
    H_gc1[0:3, 3] = p_01 - sign(sdist) * radius1 * normal
    return (sdist, H_gc0, H_gc1)
Example #3
0
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1):
    """
    :param H_g0: pose of the plane `H_{g0}`
    :type H_g0: (4,4) array
    :param coeffs0: coefficients from the plane equation
    :type coeffs0: (4,) array
    :param p_g1: center of the sphere
    :type p_g1: (3,) array
    :param radius1: radius of the sphere
    :type radius1: float

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> coeffs0 = array([0., 1., 0., -5.])
    >>> r1 = 0.1
    >>> p_g1 = array([2., 4., 3.])
    >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1)
    >>> print sdist
    8.9
    >>> print H_gc0
    [[ 0.  1.  0.  2.]
     [-0.  0.  1. -5.]
     [ 1. -0.  0.  3.]
     [ 0.  0.  0.  1.]]
    >>> print H_gc1
    [[ 0.   1.   0.   2. ]
     [-0.   0.   1.   3.9]
     [ 1.  -0.   0.   3. ]
     [ 0.   0.   0.   1. ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    assert norm(coeffs0[0:3]) == 1.
    assert radius1 >= 0.
    normal = coeffs0[0:3] # the plane normal
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    csdist = dot(normal, p_01) - coeffs0[3] # signed distance from the center
    sdist = csdist - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc0[0:3,3] = p_01 - csdist * normal
    H_gc1 = H_gc0.copy()
    H_gc1[0:3,3] = p_01 - sign(sdist) * radius1 * normal
    return (sdist, H_gc0, H_gc1)
Example #4
0
def _plane_sphere_collision(H_g0, coeffs0, p_g1, radius1):
    """
    :param H_g0: pose of the plane `H_{g0}`
    :type H_g0: (4,4) array
    :param coeffs0: coefficients from the plane equation
    :type coeffs0: (4,) array
    :param p_g1: center of the sphere
    :type p_g1: (3,) array
    :param radius1: radius of the sphere
    :type radius1: float

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> coeffs0 = array([0., 1., 0., -5.])
    >>> r1 = 0.1
    >>> p_g1 = array([2., 4., 3.])
    >>> (sdist, H_gc0, H_gc1) = _plane_sphere_collision(H_g0, coeffs0, p_g1, r1)
    >>> print sdist
    8.9
    >>> print H_gc0
    [[ 0.  1.  0.  2.]
     [-0.  0.  1. -5.]
     [ 1. -0.  0.  3.]
     [ 0.  0.  0.  1.]]
    >>> print H_gc1
    [[ 0.   1.   0.   2. ]
     [-0.   0.   1.   3.9]
     [ 1.  -0.   0.   3. ]
     [ 0.   0.   0.   1. ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    assert norm(coeffs0[0:3]) == 1.
    assert radius1 >= 0.
    normal = coeffs0[0:3]  # the plane normal
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    csdist = dot(normal, p_01) - coeffs0[3]  # signed distance from the center
    sdist = csdist - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc0[0:3, 3] = p_01 - csdist * normal
    H_gc1 = H_gc0.copy()
    H_gc1[0:3, 3] = p_01 - sign(sdist) * radius1 * normal
    return (sdist, H_gc0, H_gc1)
Example #5
0
                                #      Hg.rotx   R = Rx


H_o_b = np.dot(H_o_a, H_a_b)       # H from {o} to {b} is H{o}->{a} * H{a}->{b}


H_b_o = Hg.inv(H_o_b)           # obtain inverse, H from {b} to {o}
print("H_o_b * H_b_o\n", np.dot(H_o_b, H_b_o))


isHM =Hg.ishomogeneousmatrix(H_o_b)   # check validity of homogeneous matrix
print("is homogeneous matrix?", isHM)


p_b = np.array([.4,.5,.6])         # point p expressed in frame {b}
p_o = Hg.pdot(H_o_b, p_b)       # point p expressed in frame {o}


v_b = np.array([.4,.5,.6])         # idem for vector, here affine part is not
v_o = Hg.vdot(H_o_b, v_b)       # taken into account


Ad_o_b = Hg.adjoint(H_o_b)      # to obtain the adjoint related to displacement
Ad_b_o = Hg.iadjoint(H_o_b)     # to obtain the adjoint of the inverse




##### About adjoint matrix #####################################################

import arboris.adjointmatrix as Adm
Example #6
0
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1):
    """
    :param H_g0: pose of the box `H_{g0}`
    :type H_g0: (4,4) array
    :param half_extents0: half lengths of the box
    :type half_extents0: (3,) array
    :param p_g1: center of the sphere
    :type p_g1: (3,) array
    :param radius1: radius of the sphere
    :type radius1: float

    .. image:: img/box_sphere_collision.png

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> lengths0 = array([1., 2., 3.])
    >>> r1 = 0.1
    >>> p_g1 = array([0., 3., 1.])
    >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    1.9
    >>> print(H_gc0)
    [[ 0.  1.  0.  0.]
     [-0.  0.  1.  1.]
     [ 1. -0.  0.  1.]
     [ 0.  0.  0.  1.]]
    >>> print(H_gc1)
    [[ 0.   1.   0.   0. ]
     [-0.   0.   1.   2.9]
     [ 1.  -0.   0.   1. ]
     [ 0.   0.   0.   1. ]]
    >>> p_g1 = array([0.55, 0., 0.])
    >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.05
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.45]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]
    >>> p_g1 = array([0.45, 0., 0.])
    >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.15
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.35]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    if (abs(p_01) <= half_extents0).all():
        # p_01 is inside the box, we need to find the nearest face
        i = argmin(hstack((half_extents0 - p_01, half_extents0 + p_01)))
        f_0 = p_01.copy()
        normal = zeros(3)
        if i < 3:
            f_0[i] = half_extents0[i]
            normal[i] = 1
        else:
            f_0[i-3] = -half_extents0[i-3]
            normal[i-3] = -1 #TODO check this line is correct
        f_g = Hg.pdot(H_g0, f_0)
        sdist = -norm(f_g - p_g1)-radius1
    else:
        # find the point x inside the box that is the nearest to
        # the sphere center:
        f_0 = zeros(3)
        for i in range(3):
            f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i])
        f_g = Hg.pdot(H_g0, f_0)
        vec = p_g1 - f_g
        normal = vec/norm(vec)
        sdist = norm(vec) - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc1 = H_gc0.copy()
    H_gc0[0:3, 3] = f_g
    H_gc1[0:3, 3] = p_g1 - radius1*normal
    return (sdist, H_gc0, H_gc1)
Example #7
0
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1):
    """
    :param H_g0: pose of the box `H_{g0}`
    :type H_g0: (4,4) array
    :param half_extents0: half lengths of the box
    :type half_extents0: (3,) array
    :param p_g1: center of the sphere
    :type p_g1: (3,) array
    :param radius1: radius of the sphere
    :type radius1: float

    .. image:: img/box_sphere_collision.png

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> lengths0 = array([1., 2., 3.])
    >>> r1 = 0.1
    >>> p_g1 = array([0., 3., 1.])
    >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    1.9
    >>> print(H_gc0)
    [[ 0.  1.  0.  0.]
     [-0.  0.  1.  1.]
     [ 1. -0.  0.  1.]
     [ 0.  0.  0.  1.]]
    >>> print(H_gc1)
    [[ 0.   1.   0.   0. ]
     [-0.   0.   1.   2.9]
     [ 1.  -0.   0.   1. ]
     [ 0.   0.   0.   1. ]]
    >>> p_g1 = array([0.55, 0., 0.])
    >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.05
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.45]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]
    >>> p_g1 = array([0.45, 0., 0.])
    >>> (sdist, H_gc0, H_gc1) = _box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.15
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.35]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    if (abs(p_01) <= half_extents0).all():
        # p_01 is inside the box, we need to find the nearest face
        i = argmin(hstack((half_extents0 - p_01, half_extents0 + p_01)))
        f_0 = p_01.copy()
        normal = zeros(3)
        if i < 3:
            f_0[i] = half_extents0[i]
            normal[i] = 1
        else:
            f_0[i - 3] = -half_extents0[i - 3]
            normal[i - 3] = -1  #TODO check this line is correct
        f_g = Hg.pdot(H_g0, f_0)
        sdist = -norm(f_g - p_g1) - radius1
    else:
        # find the point x inside the box that is the nearest to
        # the sphere center:
        f_0 = zeros(3)
        for i in range(3):
            f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i])
        f_g = Hg.pdot(H_g0, f_0)
        vec = p_g1 - f_g
        normal = vec / norm(vec)
        sdist = norm(vec) - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc1 = H_gc0.copy()
    H_gc0[0:3, 3] = f_g
    H_gc1[0:3, 3] = p_g1 - radius1 * normal
    return (sdist, H_gc0, H_gc1)
Example #8
0
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1):
    """ Get information on box/sphere collision.

    :param H_g0: pose of the center of the box relative to the ground
    :type H_g0: (4,4)-array
    :param half_extents0: half lengths of the box
    :type half_extents0: (3,)-array
    :param p_g1: position of the center of the sphere relative to the ground
    :type p_g1: (3,) array
    :param float radius1: radius of the sphere
    :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with:

            * *sdist*: the minimal distance between the box and the sphere
            * *H_gc0*: the pose from the ground to the closest contact point on box 0 (normal along z)
            * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z)

    .. image:: img/box_sphere_collision.svg
       :width: 300px

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> lengths0 = array([1., 2., 3.])
    >>> r1 = 0.1
    >>> p_g1 = array([0., 3., 1.])
    >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    1.9
    >>> print(H_gc0)
    [[ 0.  1.  0.  0.]
     [-0.  0.  1.  1.]
     [ 1. -0.  0.  1.]
     [ 0.  0.  0.  1.]]
    >>> print(H_gc1)
    [[ 0.   1.   0.   0. ]
     [-0.   0.   1.   2.9]
     [ 1.  -0.   0.   1. ]
     [ 0.   0.   0.   1. ]]
    >>> p_g1 = array([0.55, 0., 0.])
    >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.05
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.45]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]
    >>> p_g1 = array([0.45, 0., 0.])
    >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.15
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.35]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    if (abs(p_01) <= half_extents0).all():
        # p_01 is inside the box, we need to find the nearest face
        near_face = zeros(6)
        near_face[0:3] = half_extents0 - p_01
        near_face[3:6] = half_extents0 + p_01
        i = argmin(near_face)
        f_0 = p_01.copy()
        normal = zeros(3)
        if i < 3:
            f_0[i] = half_extents0[i]
            normal[i] = 1
        else:
            f_0[i - 3] = -half_extents0[i - 3]
            normal[i - 3] = -1  #TODO check this line is correct
        f_g = Hg.pdot(H_g0, f_0)
        sdist = -norm(f_g - p_g1) - radius1
    else:
        # find the point x inside the box that is the nearest to
        # the sphere center:
        f_0 = zeros(3)
        for i in arange(3):
            f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i])
        f_g = Hg.pdot(H_g0, f_0)
        vec = p_g1 - f_g
        normal = vec / norm(vec)
        sdist = norm(vec) - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc1 = H_gc0.copy()
    H_gc0[0:3, 3] = f_g
    H_gc1[0:3, 3] = p_g1 - radius1 * normal
    return (sdist, H_gc0, H_gc1)
Example #9
0
def _box_sphere_collision(H_g0, half_extents0, p_g1, radius1):
    """ Get information on box/sphere collision.

    :param H_g0: pose of the center of the box relative to the ground
    :type H_g0: (4,4)-array
    :param half_extents0: half lengths of the box
    :type half_extents0: (3,)-array
    :param p_g1: position of the center of the sphere relative to the ground
    :type p_g1: (3,) array
    :param float radius1: radius of the sphere
    :return: a tuple (*sdist*, *H_gc0*, *H_gc1*) with:

            * *sdist*: the minimal distance between the box and the sphere
            * *H_gc0*: the pose from the ground to the closest contact point on box 0 (normal along z)
            * *H_gc1*: the pose from the ground to the closest contact point on sphere 1 (normal along z)

    .. image:: img/box_sphere_collision.svg
       :width: 300px

    **Tests:**

    >>> from numpy import array, eye
    >>> H_g0 = eye(4)
    >>> lengths0 = array([1., 2., 3.])
    >>> r1 = 0.1
    >>> p_g1 = array([0., 3., 1.])
    >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    1.9
    >>> print(H_gc0)
    [[ 0.  1.  0.  0.]
     [-0.  0.  1.  1.]
     [ 1. -0.  0.  1.]
     [ 0.  0.  0.  1.]]
    >>> print(H_gc1)
    [[ 0.   1.   0.   0. ]
     [-0.   0.   1.   2.9]
     [ 1.  -0.   0.   1. ]
     [ 0.   0.   0.   1. ]]
    >>> p_g1 = array([0.55, 0., 0.])
    >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.05
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.45]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]
    >>> p_g1 = array([0.45, 0., 0.])
    >>> (sdist, H_gc0, H_gc1)=_box_sphere_collision(H_g0, lengths0/2, p_g1, r1)
    >>> print(sdist)
    -0.15
    >>> print(H_gc0)
    [[-0.   0.   1.   0.5]
     [ 0.  -1.   0.   0. ]
     [ 1.   0.   0.   0. ]
     [ 0.   0.   0.   1. ]]
    >>> print(H_gc1)
    [[-0.    0.    1.    0.35]
     [ 0.   -1.    0.    0.  ]
     [ 1.    0.    0.    0.  ]
     [ 0.    0.    0.    1.  ]]

    """
    assert Hg.ishomogeneousmatrix(H_g0)
    p_01 = Hg.pdot(Hg.inv(H_g0), p_g1)
    if (abs(p_01) <= half_extents0).all():
        # p_01 is inside the box, we need to find the nearest face
        near_face = zeros(6)
        near_face[0:3] = half_extents0 - p_01
        near_face[3:6] = half_extents0 + p_01
        i = argmin(near_face)
        f_0 = p_01.copy()
        normal = zeros(3)
        if i < 3:
            f_0[i] = half_extents0[i]
            normal[i] = 1
        else:
            f_0[i-3] = -half_extents0[i-3]
            normal[i-3] = -1 #TODO check this line is correct
        f_g = Hg.pdot(H_g0, f_0)
        sdist = -norm(f_g - p_g1)-radius1
    else:
        # find the point x inside the box that is the nearest to
        # the sphere center:
        f_0 = zeros(3)
        for i in arange(3):
            f_0[i] = max(min(half_extents0[i], p_01[i]), -half_extents0[i])
        f_g = Hg.pdot(H_g0, f_0)
        vec = p_g1 - f_g
        normal = vec/norm(vec)
        sdist = norm(vec) - radius1
    H_gc0 = Hg.zaligned(normal)
    H_gc1 = H_gc0.copy()
    H_gc0[0:3, 3] = f_g
    H_gc1[0:3, 3] = p_g1 - radius1*normal
    return (sdist, H_gc0, H_gc1)