def _save_min_max_meta(self, name, namespace): if self.scale_param.area == consts.ALL: LOGGER.debug("save_min_max_meta with mode is all") feat_upper = "None" if self.scale_param.feat_upper is None else str(self.scale_param.feat_upper) feat_lower = "None" if self.scale_param.feat_lower is None else str(self.scale_param.feat_lower) out_upper = "None" if self.scale_param.out_upper is None else str(self.scale_param.out_upper) out_lower = "None" if self.scale_param.out_lower is None else str(self.scale_param.out_lower) min_max_scale_meta = feature_scale_meta_pb2.MinMaxScaleMeta(feat_upper=feat_upper, feat_lower=feat_lower, out_upper=out_upper, out_lower=out_lower) minmax_scale_meta = {"0": min_max_scale_meta} meta_protobuf_obj = feature_scale_meta_pb2.ScaleMeta(is_scale=True, strategy=self.scale_param.method, minmax_scale_meta=minmax_scale_meta) else: LOGGER.debug("save_min_max_meta with mode is {}".format(self.scale_param.mode)) meta_protobuf_obj = feature_scale_meta_pb2.ScaleMeta(is_scale=True) buffer_type = "{}.meta".format(self.class_name) model_manager.save_model(buffer_type=buffer_type, proto_buffer=meta_protobuf_obj, name=name, namespace=namespace) return buffer_type
def _save_standard_scale_meta(self, name, namespace): with_mean = self.scale_param.with_mean with_std = self.scale_param.with_std standard_scale_meta = feature_scale_meta_pb2.StandardScaleMeta(with_mean=with_mean, with_std=with_std) meta_protobuf_obj = feature_scale_meta_pb2.ScaleMeta(is_scale=True, strategy=self.scale_param.method, standard_scale_meta=standard_scale_meta) buffer_type = "{}.meta".format(self.class_name) model_manager.save_model(buffer_type=buffer_type, proto_buffer=meta_protobuf_obj, name=name, namespace=namespace) return buffer_type