def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer, act, act_attr, conv_block_dropout, conv_block_num, conv_block_dilation, out_conv_act, out_conv_act_attr): super(DecoderUnet, self).__init__() conv_blocks = [] for i in range(conv_block_num): conv_blocks.append( ResBlock(name="{}_conv_block_{}".format(name, i), channels=encode_dim * 8, norm_layer=norm_layer, use_dropout=conv_block_dropout, use_dilation=conv_block_dilation, use_bias=use_bias)) self._conv_blocks = nn.Sequential(*conv_blocks) self._up1 = SNConvTranspose(name=name + "_up1", in_channels=encode_dim * 8, out_channels=encode_dim * 4, kernel_size=3, stride=2, padding=1, output_padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up2 = SNConvTranspose(name=name + "_up2", in_channels=encode_dim * 8, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, output_padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up3 = SNConvTranspose(name=name + "_up3", in_channels=encode_dim * 4, out_channels=encode_dim, kernel_size=3, stride=2, padding=1, output_padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate") self._out_conv = SNConv(name=name + "_out_conv", in_channels=encode_dim, out_channels=out_channels, kernel_size=3, use_bias=use_bias, norm_layer=None, act=out_conv_act, act_attr=out_conv_act_attr)
def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer, act, act_attr): super(EncoderUnet, self).__init__() self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate") self._in_conv = SNConv(name=name + "_in_conv", in_channels=in_channels, out_channels=encode_dim, kernel_size=7, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down1 = SNConv(name=name + "_down1", in_channels=encode_dim, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down2 = SNConv(name=name + "_down2", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down3 = SNConv(name=name + "_down3", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down4 = SNConv(name=name + "_down4", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up1 = SNConvTranspose(name=name + "_up1", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up2 = SNConvTranspose(name=name + "_up2", in_channels=encode_dim * 4, out_channels=encode_dim * 4, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr)
class DecoderUnet(nn.Layer): def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer, act, act_attr, conv_block_dropout, conv_block_num, conv_block_dilation, out_conv_act, out_conv_act_attr): super(DecoderUnet, self).__init__() conv_blocks = [] for i in range(conv_block_num): conv_blocks.append( ResBlock(name="{}_conv_block_{}".format(name, i), channels=encode_dim * 8, norm_layer=norm_layer, use_dropout=conv_block_dropout, use_dilation=conv_block_dilation, use_bias=use_bias)) self._conv_blocks = nn.Sequential(*conv_blocks) self._up1 = SNConvTranspose(name=name + "_up1", in_channels=encode_dim * 8, out_channels=encode_dim * 4, kernel_size=3, stride=2, padding=1, output_padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up2 = SNConvTranspose(name=name + "_up2", in_channels=encode_dim * 8, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, output_padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up3 = SNConvTranspose(name=name + "_up3", in_channels=encode_dim * 4, out_channels=encode_dim, kernel_size=3, stride=2, padding=1, output_padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate") self._out_conv = SNConv(name=name + "_out_conv", in_channels=encode_dim, out_channels=out_channels, kernel_size=3, use_bias=use_bias, norm_layer=None, act=out_conv_act, act_attr=out_conv_act_attr) def forward(self, x, y, feature2, feature1): output_dict = dict() output_dict["conv_blocks"] = self._conv_blocks( paddle.concat((x, y), axis=1)) output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"]) output_dict["up2"] = self._up2.forward( paddle.concat((output_dict["up1"], feature2), axis=1)) output_dict["up3"] = self._up3.forward( paddle.concat((output_dict["up2"], feature1), axis=1)) output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"]) output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"]) return output_dict
class EncoderUnet(nn.Layer): def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer, act, act_attr): super(EncoderUnet, self).__init__() self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate") self._in_conv = SNConv(name=name + "_in_conv", in_channels=in_channels, out_channels=encode_dim, kernel_size=7, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down1 = SNConv(name=name + "_down1", in_channels=encode_dim, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down2 = SNConv(name=name + "_down2", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down3 = SNConv(name=name + "_down3", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._down4 = SNConv(name=name + "_down4", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up1 = SNConvTranspose(name=name + "_up1", in_channels=encode_dim * 2, out_channels=encode_dim * 2, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) self._up2 = SNConvTranspose(name=name + "_up2", in_channels=encode_dim * 4, out_channels=encode_dim * 4, kernel_size=3, stride=2, padding=1, use_bias=use_bias, norm_layer=norm_layer, act=act, act_attr=act_attr) def forward(self, x): output_dict = dict() x = self._pad2d(x) output_dict['in_conv'] = self._in_conv.forward(x) output_dict['down1'] = self._down1.forward(output_dict['in_conv']) output_dict['down2'] = self._down2.forward(output_dict['down1']) output_dict['down3'] = self._down3.forward(output_dict['down2']) output_dict['down4'] = self._down4.forward(output_dict['down3']) output_dict['up1'] = self._up1.forward(output_dict['down4']) output_dict['up2'] = self._up2.forward( paddle.concat((output_dict['down3'], output_dict['up1']), axis=1)) output_dict['concat'] = paddle.concat( (output_dict['down2'], output_dict['up2']), axis=1) return output_dict