Example #1
0
 def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer,
              act, act_attr, conv_block_dropout, conv_block_num,
              conv_block_dilation, out_conv_act, out_conv_act_attr):
     super(DecoderUnet, self).__init__()
     conv_blocks = []
     for i in range(conv_block_num):
         conv_blocks.append(
             ResBlock(name="{}_conv_block_{}".format(name, i),
                      channels=encode_dim * 8,
                      norm_layer=norm_layer,
                      use_dropout=conv_block_dropout,
                      use_dilation=conv_block_dilation,
                      use_bias=use_bias))
     self._conv_blocks = nn.Sequential(*conv_blocks)
     self._up1 = SNConvTranspose(name=name + "_up1",
                                 in_channels=encode_dim * 8,
                                 out_channels=encode_dim * 4,
                                 kernel_size=3,
                                 stride=2,
                                 padding=1,
                                 output_padding=1,
                                 use_bias=use_bias,
                                 norm_layer=norm_layer,
                                 act=act,
                                 act_attr=act_attr)
     self._up2 = SNConvTranspose(name=name + "_up2",
                                 in_channels=encode_dim * 8,
                                 out_channels=encode_dim * 2,
                                 kernel_size=3,
                                 stride=2,
                                 padding=1,
                                 output_padding=1,
                                 use_bias=use_bias,
                                 norm_layer=norm_layer,
                                 act=act,
                                 act_attr=act_attr)
     self._up3 = SNConvTranspose(name=name + "_up3",
                                 in_channels=encode_dim * 4,
                                 out_channels=encode_dim,
                                 kernel_size=3,
                                 stride=2,
                                 padding=1,
                                 output_padding=1,
                                 use_bias=use_bias,
                                 norm_layer=norm_layer,
                                 act=act,
                                 act_attr=act_attr)
     self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate")
     self._out_conv = SNConv(name=name + "_out_conv",
                             in_channels=encode_dim,
                             out_channels=out_channels,
                             kernel_size=3,
                             use_bias=use_bias,
                             norm_layer=None,
                             act=out_conv_act,
                             act_attr=out_conv_act_attr)
Example #2
0
 def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer,
              act, act_attr):
     super(EncoderUnet, self).__init__()
     self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate")
     self._in_conv = SNConv(name=name + "_in_conv",
                            in_channels=in_channels,
                            out_channels=encode_dim,
                            kernel_size=7,
                            use_bias=use_bias,
                            norm_layer=norm_layer,
                            act=act,
                            act_attr=act_attr)
     self._down1 = SNConv(name=name + "_down1",
                          in_channels=encode_dim,
                          out_channels=encode_dim * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          use_bias=use_bias,
                          norm_layer=norm_layer,
                          act=act,
                          act_attr=act_attr)
     self._down2 = SNConv(name=name + "_down2",
                          in_channels=encode_dim * 2,
                          out_channels=encode_dim * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          use_bias=use_bias,
                          norm_layer=norm_layer,
                          act=act,
                          act_attr=act_attr)
     self._down3 = SNConv(name=name + "_down3",
                          in_channels=encode_dim * 2,
                          out_channels=encode_dim * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          use_bias=use_bias,
                          norm_layer=norm_layer,
                          act=act,
                          act_attr=act_attr)
     self._down4 = SNConv(name=name + "_down4",
                          in_channels=encode_dim * 2,
                          out_channels=encode_dim * 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          use_bias=use_bias,
                          norm_layer=norm_layer,
                          act=act,
                          act_attr=act_attr)
     self._up1 = SNConvTranspose(name=name + "_up1",
                                 in_channels=encode_dim * 2,
                                 out_channels=encode_dim * 2,
                                 kernel_size=3,
                                 stride=2,
                                 padding=1,
                                 use_bias=use_bias,
                                 norm_layer=norm_layer,
                                 act=act,
                                 act_attr=act_attr)
     self._up2 = SNConvTranspose(name=name + "_up2",
                                 in_channels=encode_dim * 4,
                                 out_channels=encode_dim * 4,
                                 kernel_size=3,
                                 stride=2,
                                 padding=1,
                                 use_bias=use_bias,
                                 norm_layer=norm_layer,
                                 act=act,
                                 act_attr=act_attr)
Example #3
0
class DecoderUnet(nn.Layer):
    def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer,
                 act, act_attr, conv_block_dropout, conv_block_num,
                 conv_block_dilation, out_conv_act, out_conv_act_attr):
        super(DecoderUnet, self).__init__()
        conv_blocks = []
        for i in range(conv_block_num):
            conv_blocks.append(
                ResBlock(name="{}_conv_block_{}".format(name, i),
                         channels=encode_dim * 8,
                         norm_layer=norm_layer,
                         use_dropout=conv_block_dropout,
                         use_dilation=conv_block_dilation,
                         use_bias=use_bias))
        self._conv_blocks = nn.Sequential(*conv_blocks)
        self._up1 = SNConvTranspose(name=name + "_up1",
                                    in_channels=encode_dim * 8,
                                    out_channels=encode_dim * 4,
                                    kernel_size=3,
                                    stride=2,
                                    padding=1,
                                    output_padding=1,
                                    use_bias=use_bias,
                                    norm_layer=norm_layer,
                                    act=act,
                                    act_attr=act_attr)
        self._up2 = SNConvTranspose(name=name + "_up2",
                                    in_channels=encode_dim * 8,
                                    out_channels=encode_dim * 2,
                                    kernel_size=3,
                                    stride=2,
                                    padding=1,
                                    output_padding=1,
                                    use_bias=use_bias,
                                    norm_layer=norm_layer,
                                    act=act,
                                    act_attr=act_attr)
        self._up3 = SNConvTranspose(name=name + "_up3",
                                    in_channels=encode_dim * 4,
                                    out_channels=encode_dim,
                                    kernel_size=3,
                                    stride=2,
                                    padding=1,
                                    output_padding=1,
                                    use_bias=use_bias,
                                    norm_layer=norm_layer,
                                    act=act,
                                    act_attr=act_attr)
        self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate")
        self._out_conv = SNConv(name=name + "_out_conv",
                                in_channels=encode_dim,
                                out_channels=out_channels,
                                kernel_size=3,
                                use_bias=use_bias,
                                norm_layer=None,
                                act=out_conv_act,
                                act_attr=out_conv_act_attr)

    def forward(self, x, y, feature2, feature1):
        output_dict = dict()
        output_dict["conv_blocks"] = self._conv_blocks(
            paddle.concat((x, y), axis=1))
        output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"])
        output_dict["up2"] = self._up2.forward(
            paddle.concat((output_dict["up1"], feature2), axis=1))
        output_dict["up3"] = self._up3.forward(
            paddle.concat((output_dict["up2"], feature1), axis=1))
        output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"])
        output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"])
        return output_dict
Example #4
0
class EncoderUnet(nn.Layer):
    def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer,
                 act, act_attr):
        super(EncoderUnet, self).__init__()
        self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate")
        self._in_conv = SNConv(name=name + "_in_conv",
                               in_channels=in_channels,
                               out_channels=encode_dim,
                               kernel_size=7,
                               use_bias=use_bias,
                               norm_layer=norm_layer,
                               act=act,
                               act_attr=act_attr)
        self._down1 = SNConv(name=name + "_down1",
                             in_channels=encode_dim,
                             out_channels=encode_dim * 2,
                             kernel_size=3,
                             stride=2,
                             padding=1,
                             use_bias=use_bias,
                             norm_layer=norm_layer,
                             act=act,
                             act_attr=act_attr)
        self._down2 = SNConv(name=name + "_down2",
                             in_channels=encode_dim * 2,
                             out_channels=encode_dim * 2,
                             kernel_size=3,
                             stride=2,
                             padding=1,
                             use_bias=use_bias,
                             norm_layer=norm_layer,
                             act=act,
                             act_attr=act_attr)
        self._down3 = SNConv(name=name + "_down3",
                             in_channels=encode_dim * 2,
                             out_channels=encode_dim * 2,
                             kernel_size=3,
                             stride=2,
                             padding=1,
                             use_bias=use_bias,
                             norm_layer=norm_layer,
                             act=act,
                             act_attr=act_attr)
        self._down4 = SNConv(name=name + "_down4",
                             in_channels=encode_dim * 2,
                             out_channels=encode_dim * 2,
                             kernel_size=3,
                             stride=2,
                             padding=1,
                             use_bias=use_bias,
                             norm_layer=norm_layer,
                             act=act,
                             act_attr=act_attr)
        self._up1 = SNConvTranspose(name=name + "_up1",
                                    in_channels=encode_dim * 2,
                                    out_channels=encode_dim * 2,
                                    kernel_size=3,
                                    stride=2,
                                    padding=1,
                                    use_bias=use_bias,
                                    norm_layer=norm_layer,
                                    act=act,
                                    act_attr=act_attr)
        self._up2 = SNConvTranspose(name=name + "_up2",
                                    in_channels=encode_dim * 4,
                                    out_channels=encode_dim * 4,
                                    kernel_size=3,
                                    stride=2,
                                    padding=1,
                                    use_bias=use_bias,
                                    norm_layer=norm_layer,
                                    act=act,
                                    act_attr=act_attr)

    def forward(self, x):
        output_dict = dict()
        x = self._pad2d(x)
        output_dict['in_conv'] = self._in_conv.forward(x)
        output_dict['down1'] = self._down1.forward(output_dict['in_conv'])
        output_dict['down2'] = self._down2.forward(output_dict['down1'])
        output_dict['down3'] = self._down3.forward(output_dict['down2'])
        output_dict['down4'] = self._down4.forward(output_dict['down3'])
        output_dict['up1'] = self._up1.forward(output_dict['down4'])
        output_dict['up2'] = self._up2.forward(
            paddle.concat((output_dict['down3'], output_dict['up1']), axis=1))
        output_dict['concat'] = paddle.concat(
            (output_dict['down2'], output_dict['up2']), axis=1)
        return output_dict