def test_smoke(data, trend, lags, leads, common, max_lag, method): y, x = data if common: leads = lags mod = DynamicOLS(y, x, trend, lags, leads, common, max_lag, max_lag, method) mod.fit()
def test_smoke_fit(data, cov_type, kernel, bandwidth, force_int, df_adjust): y, x = data mod = DynamicOLS(y, x, "ct", 3, 5, False) res = mod.fit(cov_type, kernel, bandwidth, force_int, df_adjust) assert isinstance(res.leads, int) assert isinstance(res.lags, int) assert isinstance(res.bandwidth, (int, float)) assert isinstance(res.params, pd.Series) assert isinstance(res.cov_type, str) assert isinstance(res.resid, pd.Series) assert isinstance(res.cov, pd.DataFrame) assert isinstance(res.kernel, str) assert isinstance(res.summary().as_text(), str) assert isinstance(res.summary(True).as_text(), str)