def test_kpss_c(self): kpss = KPSS(self.inflation, trend="c", lags=12) assert_almost_equal(kpss.stat, 0.3276290340191141, DECIMAL_4)
def test_kpss(self): kpss = KPSS(self.inflation, trend='ct', lags=12) assert_almost_equal(kpss.stat, .235581902996454, DECIMAL_4) assert_equal(self.inflation.shape[0], kpss.nobs) kpss.summary()
def test_kpss(self): kpss = KPSS(self.inflation, trend="ct", lags=12) assert_almost_equal(kpss.stat, 0.235581902996454, DECIMAL_4) assert_equal(self.inflation.shape[0], kpss.nobs) kpss.summary()
def test_kpss_auto(self): kpss = KPSS(self.inflation, lags=-1) m = self.inflation.shape[0] lags = np.ceil(12.0 * (m / 100)**(1.0 / 4)) assert_equal(kpss.lags, lags)
def test_kpss_legacy(): y = np.random.standard_normal(4) with pytest.raises(InfeasibleTestException, match="The number of observations 4"): assert np.isfinite(KPSS(y, lags=-1).stat)
def test_kpss_data_dependent_lags(data, trend, lags): # real GDP from macrodata data set kpss = KPSS(data, trend=trend) assert_equal(kpss.lags, lags)
lh = np.log(data / data.shift(1)).dropna() # d 1 garch_plot1(lh['Close']) print('Lean Hogs Future skewness is {}'.format(lh.skew(axis=0)[0])) print('Lean Hogs Future kurtosis is {}'.format(lh.kurtosis(axis=0)[0])) sns.distplot(lh['Close'], color='blue') #density plot plt.title('1986–2018 Lean Hogs Future return frequency') plt.xlabel('Possible range of data values') # Pull up summary statistics print(lh.describe()) adf = ADF(lh['Close']) print(adf.summary().as_text()) kpss = KPSS(lh['Close']) print(kpss.summary().as_text()) dfgls = DFGLS(lh['Close']) print(dfgls.summary().as_text()) pp = PhillipsPerron(lh['Close']) print(pp.summary().as_text()) za = ZivotAndrews(lh['Close']) print(za.summary().as_text()) vr = VarianceRatio(lh['Close'], 12) print(vr.summary().as_text()) from arch import arch_model X = 100 * lh import datetime as dt