Example #1
0
def do_train(cur_step, optimizer, sim, model):
    model.train()
    while True:
        steps = 4 * 25 * spf
        reset_sim(sim)
        st = time.time()
        loss, dis, vext = run_sim(steps, sim, model)
        en0 = time.time()
        # loss = get_loss(steps,sim)
        optimizer.zero_grad()
        print('step={}'.format(cur_step))
        print('forward time={}'.format(en0 - st))
        print('loss={}'.format(loss.data))
        f.write('step {}: loss={}\n'.format(cur_step, loss.data))
        print('step {}: loss={}\n'.format(cur_step, loss.data))
        loss.backward()
        nn.utils.clip_grad_value_(model.parameters(), 10)
        if dis[:2].norm() < 0.5 and dis[2] > 0 and dis[2] < 0.5:
            break
        en1 = time.time()
        print('backward time={}'.format(en1 - en0))
        optimizer.step()
        #f.write('{}\n'.format(vext.grad));
        f.write('{}\n'.format(vext * scalev))
        arcsim.delete_mesh(sim.cloths[0].mesh)
        # break
    torch.save(model.state_dict(), sys.argv[1] + "/3.pt")
def do_train(cur_step,optimizer,sim,vext):
	while True:
		steps=7*25*spf
		reset_sim(sim)
		st = time.time()
		loss, dis = run_sim(steps, sim, vext)
		# loss = loss + regularization(vext)
		en0 = time.time()
		optimizer.zero_grad()
		print('step={}'.format(cur_step))
		print('forward time={}'.format(en0-st))
		print('loss={}'.format(loss.data))
		f.write('step {}: loss={}\n'.format(cur_step, loss.data))
		print('step {}: loss={}\n'.format(cur_step, loss.data))
		loss.backward()
		vext.grad.data.clamp_(-10,10)
		if dis[:2].norm() < 0.5 and dis[2]>0 and dis[2]<0.5:
			break
		en1 = time.time()
		print('backward time={}'.format(en1-en0))
		print(vext.grad)
		optimizer.step()
		print(vext*scalev)
		f.write('{}\n'.format(vext*scalev));
		arcsim.delete_mesh(sim.cloths[0].mesh)
Example #3
0
def do_train(cur_step, optimizer, sim, vext):
    while True:
        steps = 4 * 25 * spf
        reset_sim(sim)
        st = time.time()
        loss, dis = run_sim(steps, sim, vext)
        en0 = time.time()
        # loss = get_loss(steps,sim)
        optimizer.zero_grad()
        print('step={}'.format(cur_step))
        print('forward time={}'.format(en0 - st))
        print('loss={}'.format(loss.data))
        f.write('step {}: loss={}\n'.format(cur_step, loss.data))
        print('step {}: loss={}\n'.format(cur_step, loss.data))
        loss.backward()
        vext.grad.data.clamp_(-10, 10)
        if dis[:2].norm() < 0.5 and dis[2] > 0 and dis[2] < 0.5:  #loss<1e-3:#
            break
        # dgrad, stgrad, begrad = torch.autograd.grad(loss, [density, stretch, bend])
        en1 = time.time()
        print('backward time={}'.format(en1 - en0))
        print(vext.grad)
        optimizer.step()
        print(vext * scalev)
        #f.write('{}\n'.format(vext.grad));
        f.write('{}\n'.format(vext * scalev))
        arcsim.delete_mesh(sim.cloths[0].mesh)
Example #4
0
def naive_guess(density, stretchori, bend):
    return density, stretchori, bend
    M = []
    for i in range(5, 25):
        fstd = sys.argv[2] + '/%04d_00.obj' % (i)
        mesh = arcsim.Mesh()
        arcsim.load_obj(mesh, fstd)
        fstd = sys.argv[2] + '/%04d_00.obj' % (i + 1)
        arcsim.load_obj(sim.cloths[0].mesh, fstd)
        arcsim.compute_ms_data(sim.cloths[0].mesh)
        for n0 in sim.cloths[0].mesh.nodes:
            n0.m = torch.zeros([], dtype=torch.float64)

        n = len(sim.cloths[0].mesh.nodes)
        fext = torch.zeros([n, 3], dtype=torch.float64)
        Jext = torch.zeros([n, 3], dtype=torch.float64)
        arcsim.add_external_forces(sim.cloths[0], sim.gravity, sim.wind, fext,
                                   Jext)
        m = []
        i = 0
        for n0, n1 in zip(mesh.nodes, sim.cloths[0].mesh.nodes):
            a = (n1.v - n0.v) / config['frame_time'] * config['frame_steps']
            a[2] += 9.8
            if i != 2 or i != 3:
                m.append((fext[i].sum() / a.sum()))
            i += 1
        arcsim.delete_mesh(mesh)
        M.append(torch.relu(torch.stack(m).sum()))
    print('density={}'.format(torch.stack(M).mean()))
    density = torch.stack(M).mean() / scaleden

    mesh = arcsim.Mesh()
    fstd = sys.argv[2] + '/%04d_00.obj' % (4)
    arcsim.load_obj(mesh, fstd)
    mini = 1e10
    maxi = -1e10
    for n0 in mesh.nodes:
        mini = min(mini, n0.x[2])
        maxi = max(maxi, n0.x[2])
    defo = maxi - mini - 1
    stre = density * 9.8 / defo * 2
    arcsim.delete_mesh(mesh)
    print(stre)
    stretch = torch.tensor([[1, 0, 1, 0]], dtype=torch.float64).repeat(
        [6, 1]) * stre / scalestr
    # stretch[:,0] = stretchori[:,0]
    stretch[:, 1] = stretchori[:, 1]
    # stretch[:,2] = stretchori[:,2]
    stretch[:, 3] = stretchori[:, 3]
    print(stretch)

    bend = bend

    matconfig['density'] = density.detach().numpy().tolist()
    matconfig['stretching'] = stretch.detach().numpy().tolist()
    matconfig['bending'] = bend.detach().numpy().tolist()
    save_config(matconfig, sys.argv[1] + '/mat.json')
    return density, stretch, bend
Example #5
0
def get_loss_eval(steps, sim):
    fstd = sys.argv[2] + '/%04d_00.obj' % (steps / 2)
    mesh = arcsim.Mesh()
    arcsim.load_obj(mesh, fstd)
    diffs = []
    for node0, node1 in zip(mesh.nodes, sim.cloths[0].mesh.nodes):
        diffs.append((node0.x - node1.x).norm())
    arcsim.delete_mesh(mesh)
    return torch.stack(diffs).mean()
Example #6
0
def get_loss(steps,sim):
	fstd = sys.argv[2]+'/%04d_00.obj'%(steps/2)
	mesh = arcsim.Mesh()
	arcsim.load_obj(mesh, fstd)
	diffs = []
	for node0,node1 in zip(mesh.nodes, sim.cloths[0].mesh.nodes):
		diffs.append((np.array(arcsim.tovec(node0.x))-np.array(arcsim.tovec(node1.x)))**2)
	arcsim.delete_mesh(mesh)
	return np.stack(diffs).sum(axis=1).mean()
Example #7
0
def renew_loss():
	print('renew',steps)
	matconfig['density'] = density.detach().numpy().tolist()
	matconfig['stretching'] = stretch.detach().numpy().tolist()
	matconfig['bending'] = bend.detach().numpy().tolist()
	save_config(matconfig, sys.argv[1]+'/mat.json')
	arcsim.delete_mesh(sim.cloths[0].mesh)
	reset_sim(sim)
	loss = run_sim(steps, sim)
	get_grad(steps, sim, loss, density,stretch,bend)
	return loss
Example #8
0
def do_train(cur_step, sim):
    while True:
        steps = 4 * 25 * spf
        reset_sim(sim)
        loss, dis = run_sim(steps, sim)
        # loss = get_loss(steps,sim)
        print('step={}'.format(cur_step))
        print('loss={}'.format(loss.data))
        f.write('step {}: loss={}\n'.format(cur_step, loss.data))
        print('step {}: loss={}\n'.format(cur_step, loss.data))
        #f.write('{}\n'.format(vext.grad));
        arcsim.delete_mesh(sim.cloths[0].mesh)
        break
Example #9
0
def do_train(cur_step, optimizer, sim):
    while True:
        global steps
        steps = min(50, cur_step * 2 + 2)
        density, stretch, bend = reset_sim(sim)
        st = time.time()
        loss = run_sim(steps, sim)
        en0 = time.time()
        # loss = get_loss(steps,sim)
        optimizer.zero_grad()
        print('step={}'.format(cur_step))
        print('forward time={}'.format(en0 - st))
        print('loss={}'.format(loss.data))
        f.write('step {}: d={} loss={}\n'.format(cur_step,
                                                 density.data * scaleden,
                                                 loss.data))
        print('step {}: d={} loss={}\n'.format(cur_step,
                                               density.data * scaleden,
                                               loss.data))
        if loss < 1e-4:
            break
        #loss.backward()
        # dgrad, stgrad, begrad = torch.autograd.grad(loss, [density, stretch, bend])
        #density.grad.data.clamp_(-1,1)
        #stretch.grad.data.clamp_(-1,1)
        #bend.grad.data.clamp_(-1e-3,1e-3)
        #print(density.grad)
        #print(stretch.grad)
        #print(bend.grad)
        optimizer.step(renew_loss)
        en1 = time.time()
        print('backward time={}'.format((en1 - st) / steps))
        print(density * scaleden)
        print(stretch * scalestr)
        print(bend * scaleben)
        ld = (torch.tensor(matstd['density'], dtype=torch.float64) -
              density * scaleden).norm().data
        ls = (torch.tensor(matstd['stretching'], dtype=torch.float64) -
              stretch * scalestr).norm().data
        lb = (torch.tensor(matstd['bending'], dtype=torch.float64) -
              bend * scaleben).norm().data
        print('dis={} {} {}\n'.format(ld, ls, lb))
        matconfig['density'] = density.detach().numpy().tolist()
        matconfig['stretching'] = stretch.detach().numpy().tolist()
        matconfig['bending'] = bend.detach().numpy().tolist()
        save_config(matconfig, sys.argv[1] + '/mat.json')
        arcsim.delete_mesh(sim.cloths[0].mesh)
    get_dis(density, stretch, bend)