Example #1
0
def test_live_effecient(square_dim=320):
    cap = cv2.VideoCapture(0)
    img_process = ImageProcessor()

    base_imgs = None

    test_max_black_pixel_count = 0
    drum_area1 = DrumArea(top_left_corner=(100,10), square_dim=square_dim, sound='j')
    drum_area2 = DrumArea(top_left_corner=(100,320), square_dim=square_dim, sound='c')
    drum_areas = [drum_area1, drum_area2]

    area_listener = AreaListener(drum_areas = drum_areas)
    last_states = [False for i in range(len(drum_areas))]
    max_black_pixel = [0 for i in range(len(drum_areas))]

    while True:
        _, frame_orig = cap.read()
        frame_orig = img_process.horizontal_flip(frame_orig)
        area_listener.draw_area(frame_orig)
        
        if not base_imgs:
            area_listener.set_base_image(frame_orig)
            base_imgs = area_listener.get_base_imgs(resize_dim=RESIZE_DIM)
    
        target_areas = area_listener.get_all_target_areas(\
            frame_orig, resize_dim=RESIZE_DIM)
        for i,target_area in enumerate(target_areas):
            diff = cv2.absdiff(target_area, base_imgs[i])
            diff_gray = np.asarray(cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY))
            if test_max_black_pixel_count < 100:
                max_black_pixel[i] = max(max_black_pixel[i], max(diff_gray.flatten()))
            else:
                diff_gray[diff_gray > max_black_pixel[i]] = 255
                diff_gray[diff_gray <= max_black_pixel[i]] = 0
                num_whites = len(diff_gray[diff_gray == 255])
                if num_whites > THRESHOLD_NUM_WHITES:
                    if not last_states[i]:
                        last_states[i] = True
                        drum_areas[i].playSound()
                        drum_areas[i].markPlayed(frame_orig)
                else:
                    last_states[i] = False
                
            cv2.waitKey(1)
        test_max_black_pixel_count += 1
        
        cv2.imshow('Main', frame_orig)
        key = cv2.waitKey(1)
        if key & 0xFF == ord('q'):
            break    
Example #2
0
def test_live(model, adaptive_threshold=GLOBAL_ADAPTIVE_THRESHOLD):
    # if True:
    #     return
    cap = cv2.VideoCapture(0)
    # drum_area = DrumArea(top_left_corner=(900, 100), square_dim=RESIZE_DIM, sound='c')
    # drum_area2 = DrumArea(top_left_corner=(100, 100), square_dim=RESIZE_DIM, sound='j')
    # drum_area3 = DrumArea(top_left_corner=(100, 400), square_dim=RESIZE_DIM, sound='k')

    drum_area1 = DrumArea(top_left_corner=(50, 50), square_dim=320, sound='c')
    drum_area2 = DrumArea(top_left_corner=(850, 50), square_dim=320, sound='j')

    dareas = [drum_area1]#, drum_area2]
    area_listener2 = AreaListener(drum_areas=dareas)
    img_process2 = ImageProcessor()
    probability_model2 = tf.keras.Sequential([model, tf.keras.layers.Softmax()])

    base_set = False
    base_imgs = None

    while True:
        _, frame_orig = cap.read()
        frame_orig = img_process2.horizontal_flip(frame_orig)
        frame_color = frame_orig.copy()
        #frame = cv2.cvtColor(frame_orig, cv2.COLOR_BGR2GRAY)
        frame = frame_color.copy()

        if not base_set:
            area_listener2.set_base_image(frame)
            base_imgs = area_listener2.get_base_imgs(resize_dim=(RESIZE_DIM, RESIZE_DIM))
            base_set = True
        
        for drum_area in dareas:
            process_area_cv2Diff(drum_area, frame_orig, probability_model2)
            
        area_listener2.draw_area(frame_color)
        key = cv2.waitKey(1)

        cv2.imshow('Main', frame_color)
        cv2.waitKey(1)

        if key & 0xFF == ord('q'):
            break
Example #3
0
def test_live(model):
    cap = cv2.VideoCapture(0)
    drum_area1 = DrumArea(top_left_corner=(50, 50), square_dim=320, sound='c')

    dareas = [drum_area1]
    area_listener = AreaListener(drum_areas=dareas)
    img_process = ImageProcessor()

    base_set = False
    base_imgs = None

    while True:
        _, frame_orig = cap.read()
        frame_orig = img_process.horizontal_flip(frame_orig)
        frame_color = frame_orig.copy()
        frame = frame_color.copy()

        if not base_set:
            area_listener.set_base_image(frame)
            base_imgs = area_listener2.get_base_imgs()
            base_set = True

        for drum_area in dareas:
            orig, target = drum_area.get_area(frame_orig), drum_area.base_img
            img_copy = orig.copy()
            diff = cv2.absdiff(target, orig)
            diff_gray = np.asarray(cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY))

            diff_gray = cv2.resize(diff_gray, (80, 80))
            diff_gray = tf.reshape(diff_gray, [80, 80, 1])
            center = model.predict(np.asarray([diff_gray.numpy() / 255.0]))[0]
            cv2.circle(img_copy, tuple(map(int, center)), 9, (30, 110, 200),
                       -1)
            cv2.imshow('Pred', img_copy)

            cv2.waitKey(1)

        area_listener2.draw_area(frame_color)
        key = cv2.waitKey(1)

        cv2.imshow('Main', frame_color)
        cv2.waitKey(1)

        if key == ord('s'):
            print('resetting base')
            area_listener2.set_base_image(frame)
            base_imgs = area_listener2.get_base_imgs()

        if key & 0xFF == ord('q'):
            break
def collect_samples(data_type, num_samples, saveOnKey=False):
    s_activated = False

    directory = f'{ROOT_SAMPLES_DIR}/{data_type}/'
    os.system(f'mkdir {directory}')
    last_file_name = get_last_file_name(directory)
    cap = cv2.VideoCapture(0)

    drum_area = DrumArea(top_left_corner=(50, 50),
                         square_dim=SQUARE_DIM,
                         sound='j')
    #drum_area2 = DrumArea(top_left_corner=(800, 50), square_dim=SQUARE_DIM, sound='j')
    area_listener = AreaListener(drum_areas=[drum_area])
    img_process = ImageProcessor()

    count = last_file_name - 1

    while True:
        _, frame = cap.read()
        #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frame = img_process.horizontal_flip(frame)

        targeted_area = area_listener.get_all_target_areas(img=frame)[0]
        area_listener.draw_area(frame)
        cv2.imshow('Target', targeted_area)
        cv2.imshow('Main', frame)

        key = cv2.waitKey(1)
        if key == ord('s'):
            if not s_activated:
                print('S activated')
            s_activated = True
            count = last_file_name + 1

        if count > last_file_name and count <= (num_samples + last_file_name):
            if saveOnKey and key != ord('a'):
                continue
            #file_name = get_file_name(data_type, count)
            file_name = 'mask_images/stick2.jpg'
            cv2.imwrite(file_name, targeted_area)
            count += 1
            print(f'Saved {file_name}')
        elif count > num_samples + last_file_name:
            return

        if key & 0xFF == ord('q'):
            break
def test_model_live(model):
    cap = cv2.VideoCapture(0)
    drum_area2 = DrumArea(top_left_corner=(100, 100),
                          square_dim=SQUARE_DIM,
                          sound='j')
    area_listener2 = AreaListener(drum_areas=[drum_area2])
    img_process2 = ImageProcessor()
    probability_model2 = tf.keras.Sequential(
        [model, tf.keras.layers.Softmax()])

    while True:
        _, frame = cap.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frame = img_process2.horizontal_flip(frame)

        targeted_area = area_listener2.get_all_target_areas(img=frame)[0]
        area_listener2.draw_area(frame)

        cv2.imshow('Main', frame)

        # if prediction == 0:
        #     sp.play_key(ord(drum_area.sound))

        key = cv2.waitKey(1)
        if key == ord('s'):
            file_name = 'tp.jpg'
            cv2.imwrite(file_name, targeted_area)
            to_predict_img = cv2.imread(file_name, cv2.IMREAD_GRAYSCALE)
            to_predict_list = np.asarray([np.asarray(to_predict_img)])
            prediction, _ = utils.predict(to_predict_list[0],
                                          probability_model2,
                                          preprocess=False)
            cv2.imshow('Target', to_predict_img)
            print(f'PREDICTION={prediction}')

        if key & 0xFF == ord('q'):
            break
Example #6
0
        img_name = get_file_name(type, i)
        print(img_name)
        img = cv2.imread(img_name, cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img, (32, 32))
        zeros.append(draw_histogram(img, bin_width=16))

        print('-------------------------------')
        print('\n')

    print(sorted(zeros))


# draw_all_histograms(NO_STICK_DATATYPE)

cap = cv2.VideoCapture(0)
drum_area = DrumArea(top_left_corner=(50, 50), square_dim=300, sound='j')
area_listener = AreaListener(drum_areas=[drum_area])

orig = None

while True:
    _, frame_orig = cap.read()
    frame_orig = cv2.flip(frame_orig, 1)
    frame_color = frame_orig.copy()
    frame = cv2.cvtColor(frame_orig, cv2.COLOR_BGR2GRAY)

    frame = np.asarray(frame)

    area_listener.draw_area(frame)
    ar = drum_area.get_area(frame)
def collect_preprocessed_samples(data_type,
                                 num_samples,
                                 saveOnKey=False,
                                 add_random_whiteness=False):
    s_activated = False

    directory = f'{ROOT_SAMPLES_DIR}/{data_type}/'
    os.system(f'mkdir {directory}')
    last_file_name = get_last_file_name(directory)
    cap = cv2.VideoCapture(0)

    drum_area = DrumArea(top_left_corner=(50, 50),
                         square_dim=SQUARE_DIM,
                         sound='j')
    #drum_area2 = DrumArea(top_left_corner=(800, 50), square_dim=SQUARE_DIM, sound='j')
    area_listener = AreaListener(drum_areas=[drum_area])
    img_process = ImageProcessor()

    count = last_file_name - 1
    base_set = False
    base_imgs = None

    max_black = 0
    while True:
        _, frame = cap.read()
        #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frame = img_process.horizontal_flip(frame)

        targeted_area = area_listener.get_all_target_areas(
            img=frame, resize_dim=RESIZE_DIM)[0]
        area_listener.draw_area(frame)
        cv2.imshow('Target', targeted_area)
        cv2.imshow('Main', frame)

        if not base_set:
            area_listener.set_base_image(frame)
            base_imgs = area_listener.get_base_imgs(resize_dim=RESIZE_DIM)
            base_set = True

        diff = cv2.absdiff(targeted_area, base_imgs[0])
        diff_gray = np.asarray(cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY))

        if add_random_whiteness:
            base = random.randint(0, 10)
            for i in range(RESIZE_DIM[0]):
                for j in range(RESIZE_DIM[0]):
                    diff_gray[i][j] += (base + random.randint(0, 3))

        cv2.imshow(f'diff_abs', diff_gray)
        #print(diff_gray)
        diff_gray = np.asarray(diff_gray)
        diff_gray_flat = diff_gray.flatten()

        key = cv2.waitKey(1)
        if key == ord('s'):
            if not s_activated:
                print('S activated at max_black =', max_black)
            s_activated = True
            count = last_file_name + 1

        if count > last_file_name and count <= (num_samples + last_file_name):
            if saveOnKey and key != ord('a'):
                continue
            # diff_gray[diff_gray > max_black] = 255
            # diff_gray[diff_gray <= max_black] = 0
            file_name = get_file_name(data_type, count)
            cv2.imwrite(file_name, diff_gray)
            count += 1
            print(f'Saved {file_name}')
        elif count > num_samples + last_file_name:
            return
        else:
            #print('chilling...')
            max_black = max(max_black, max(diff_gray_flat))

        if key & 0xFF == ord('q'):
            break
Example #8
0
def test_live():
    # if True:
    #     return
    cap = cv2.VideoCapture(0)

    drum_area = DrumArea(top_left_corner=(50, 50), square_dim=320, sound='c')
    drum_area2 = DrumArea(top_left_corner=(800, 50), square_dim=160, sound='j')
    area_listener2 = AreaListener(drum_areas=[drum_area2])
    img_process2 = ImageProcessor()
    imDfTool = ImageDifferenceTool()

    base_set = False
    base_imgs = None
    drum_areas_set = False

    max_perc = -1
    max_black_pixel = 0
    test_max_black_pixel_count = 0
    drum_area = DrumArea(top_left_corner=(0,0), square_dim=100, sound='j')
    while True:
        _, frame_orig = cap.read()
        if not drum_areas_set:
            area_listener2.drum_areas = [drum_area]
            drum_areas_set = True

        frame_orig = img_process2.horizontal_flip(frame_orig)
        area_listener2.draw_area(frame_orig)
        
        if not base_set:
            area_listener2.set_base_image(frame_orig)
            base_imgs = area_listener2.get_base_imgs()
            # for i, bi in enumerate(base_imgs):
            #     cv2.imshow(f'base{i}', bi)
            #     cv2.waitKey(1)
            base_set = True
        
        target_areas = area_listener2.get_all_target_areas(frame_orig)
        diffs = []
        #https://stackoverflow.com/questions/27035672/cv-extract-differences-between-two-images
        
        
        for i,ta in enumerate(target_areas):
            diff = cv2.absdiff(ta, base_imgs[i])
            mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)

            th = 1
            imask =  mask>th
            #print(imask)

            canvas = np.zeros_like(ta, np.uint8)
            canvas[imask] = ta[imask]

            # mask = np.asarray(mask)
            # mask[mask>]
            
            # orig = cv2.cvtColor(base_imgs[i], cv2.COLOR_BGR2GRAY)
            # #rig = cv2.threshold(orig,100,255,cv2.THRESH_BINARY)[1]
            # new = cv2.cvtColor(ta, cv2.COLOR_BGR2GRAY)
            #new = cv2.threshold(new,127,255,cv2.THRESH_BINARY)[1]

            #img, mask = imDfTool.ColorDiffRob(orig, new)
            #mask = cv2.medianBlur(mask, 5)
            diff_gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
            diff_gray = np.asarray(diff_gray)
            diff_gray_flat = diff_gray.flatten()
            average = np.sum(diff_gray_flat)/len(diff_gray_flat)
            if test_max_black_pixel_count < 100:
                max_black_pixel = max(max_black_pixel, max(diff_gray_flat))
            else:
                diff_gray[diff_gray > max_black_pixel+10] = 255
                diff_gray[diff_gray <= max_black_pixel+10] = 0
                cv2.circle(frame_orig, (500,100), 90, (100,140,10), -1)
                if len(diff_gray[diff_gray == 255] > 2):
                    drum_area.playSound()
                
            test_max_black_pixel_count += 1

            print(average, 'average', max(diff_gray_flat), 'max')
            # diff_gray[diff_gray > 35] = 255
            # cv2.imshow(f'canvase{i}', canvas)
            cv2.imshow(f'diff_gray{i}', diff_gray)
            # cv2.imshow(f'orig{i}', base_imgs[i])
            # cv2.imshow(f'target{i}', ta)

            # perc = imDfTool.GetWhitePercentage(mask)
            # max_perc = max(max_perc, perc)

            # cv2.imshow(f'orig{i}', orig)
            cv2.waitKey(1)
            # cv2.imshow(f'new{i}', new)
            # cv2.waitKey(1)

            # print(perc, max_perc)
            # if perc > 0.0:
            #     drum_area2.playSound()
            #     area_id = 2
            #     cv2.circle(frame_orig, (500,100*area_id), 90, ((area_id * 30 + 430) % 255,(area_id * 100) % 255, (20 * area_id) % 255), -1)
            #     #drum_area2.markPlayed(frame_orig)
            #     drum_area2.is_clear = False
            # else:
            #     drum_area2.is_clear = True
        
        cv2.imshow('Main', frame_orig)
        key = cv2.waitKey(1)
        if key & 0xFF == ord('q'):
            break