Example #1
0
    output_dir = Path(args.output_directory)
    output_dir.mkdir(exist_ok=True)
    output_path = output_dir / args.output_file_name
    for file_path in json_files:
        log.info(f"Loading {file_path}")
        with file_path.open("r") as fp:
            lines = fp.readlines()
            log.info(f"Found {len(lines)} lines")
            for line in lines:
                parsed_line = json.loads(line)
                source_value = select_and_merge_jsonpaths(
                    parsed_line, args.source_jsonpaths)
                target_value = select_and_merge_jsonpaths(
                    parsed_line, [args.target_jsonpath])
                output_object = {
                    args.source_key: source_value,
                    args.target_key: target_value,
                }
                output_line = json.dumps(output_object)
                with output_path.open("a") as out_fp:
                    out_fp.write(output_line)
                    out_fp.write(os.linesep)


if __name__ == "__main__":
    parser = ArgumentParser(Args)
    args = parser.parse_args()
    logging.basicConfig(level="INFO")
    main(args)
def start(config_params: Config):
    start_time = time.time()
    log = ImportData(config_params.event_log_file)
    logging.info(log.trace_list)
    logging.info(log.unique_events)
    logging.info(log.event_map)
    population = InitialPopulation(
        log.unique_events, config_params.initial_population_size
    )
    best_tree = utility.run(
        population.trees, log.unique_events, log.trace_list, config_params
    )
    logging.info(f"Execution time: {time.time() - start_time}")
    logging.info(
        f"Tree: {best_tree} Replay fitness: {best_tree.replay_fitness} Precision: {best_tree.precision} Simplicity: {best_tree.simplicity} Generalization: {best_tree.generalization} Fitness: {best_tree.fitness}"
    )
    for k, v in config_params.__dict__.items():
        logging.info(f"{k}: {v}")
    logging.info("Tree class values")
    for k, v in best_tree.__dict__.items():
        logging.info(f"{k}: {v}")


if __name__ == "__main__":
    parser = ArgumentParser(Config)
    config = parser.parse_args()
    start(config)



Example #3
0
class ParseOptions:
    M1_dim: Tuple[int, int] = field(metadata=dict(args=["-M1_dim"]),
                                    default=(2, 2))
    M2_dim: Tuple[int, int] = field(metadata=dict(args=["-M2_dim"]),
                                    default=(2, 2))
    hidden_layers: str = field(metadata=dict(args=["-hiddens"]), default=None)
    log_dir: str = field(metadata=dict(args=["-log-dir"]), default=None)
    learning_rate: float = field(metadata=dict(args=["-learning_rate"]),
                                 default=1e-3)
    buffer_size: int = field(metadata=dict(args=["-buf_size"]), default=1000)
    batch_size: int = field(metadata=dict(args=["-batch_size"]), default=32)
    loss: str = field(metadata=dict(args=["-loss"]), default="mse")
    optimizer: str = field(metadata=dict(args=["-optimizer"]), default="adam")
    activation: str = field(metadata=dict(args=["-activation"]),
                            default="ReLU")
    layer: str = field(metadata=dict(args=["-layer"]), default="affine")


if __name__ == "__main__":
    parser = ArgumentParser(ParseOptions)
    print(parser.parse_args())
    args = parser.parse_args()
    hiddens = args.hidden_layers[1:len(args.hidden_layers) - 1]
    hiddens = hiddens.split(',')
    hiddens = [int(i) for i in hiddens]
    args.hidden_layers = hiddens
    subprocess.Popen(["tensorboard", "--logdir", args.log_dir])
    webbrowser.open("127.0.0.1:6006")
    trainer = Trainer(**vars(args))
    trainer.train()