def create_image(ny, nx, frequency, phasecentre, cellsize=0.001, polarisation_frame=PolarisationFrame('linear')): ''' 创建和上个函数等效的非并行的image :param ny: :param nx: :param frequency: :param phasecentre: :param cellsize: :param polarisation_frame: :return: ''' wcs4 = WCS(naxis=4) wcs4.wcs.crpix = [ny // 2, nx // 2 + 1.0, 1.0, 1.0] wcs4.wcs.cdelt = [ -180.0 * cellsize / np.pi, +180.0 * cellsize / np.pi, 1.0, frequency[1] - frequency[0] ] wcs4.wcs.crval = [ phasecentre.ra.deg, phasecentre.dec.deg, 1.0, frequency[0] ] wcs4.wcs.ctype = ["RA---SIN", "DEC--SIN", 'STOKES', 'FREQ'] wcs4.wcs.radesys = 'ICRS' wcs4.wcs.equinox = 2000.00 nchan = frequency.shape[0] npol = polarisation_frame.npol image = Image() image.wcs = wcs4 image.data = np.zeros([nchan, npol, ny, nx]) image.polarisation_frame = polarisation_frame return image
def import_image_from_fits(fitsfile: str, mute_warnings=True) -> Image: """ Read an Image from fits :param fitsfile: :return: Image """ fim = Image() with warnings.catch_warnings(): warnings.simplefilter('ignore') hdulist = fits.open(arl_path(fitsfile)) fim.data = hdulist[0].data fim.wcs = WCS(arl_path(fitsfile)) hdulist.close() if len(fim.data) == 2: fim.polarisation_frame = PolarisationFrame('stokesI') else: try: fim.polarisation_frame = polarisation_frame_from_wcs( fim.wcs, fim.data.shape) except: fim.polarisation_frame = PolarisationFrame('stokesI') log.debug( "import_image_from_fits: created %s image of shape %s, size %.3f (GB)" % (fim.data.dtype, str(fim.shape), image_sizeof(fim))) log.debug("import_image_from_fits: Max, min in %s = %.6f, %.6f" % (fitsfile, fim.data.max(), fim.data.min())) assert isinstance(fim, Image) return fim
def image_para_to_image(ims: List[image_for_para], image_share: image_share) -> Image: ''' 将并行image_for_para还原为原本的Image类,验证算法正确性用 :param ims: 只有一个facet的并行Image list 类型:list[image_para] :param image_share: 并行Image的共享消息 :return: 还原后的image ''' image = Image() datatype = None if type(ims[0]) == tuple: datatype = ims[0][1].data.dtype else: datatype = ims[0].data.dtype data = np.zeros( [image_share.nchan, image_share.npol, image_share.ny, image_share.nx], dtype=datatype) dy = 0 dx = 0 if type(ims[0]) == tuple: dy = ims[0][1].ny dx = ims[0][1].nx else: dy = ims[0].ny dx = ims[0].nx assert image_share.ny // dy == image_share.nx // dx facet = image_share.ny // dy for im in ims: if type(im) == tuple: im = im[1] nchan = im.channel npol = im.polarisation y = im.facet // facet x = im.facet % facet data[nchan, npol, y * dy:(y + 1) * dy, x * dx:(x + 1) * dx] = im.data image.data = data image.wcs = image_share.wcs image.polarisation_frame = image_share.polarisation_frame return image
def create_image_from_array( data: numpy.array, wcs: WCS = None, polarisation_frame=PolarisationFrame('stokesI')) -> Image: """ Create an image from an array and optional wcs :param data: Numpy.array :param wcs: World coordinate system :param polarisation_frame: Polarisation Frame :return: Image """ fim = Image() fim.polarisation_frame = polarisation_frame fim.data = data if wcs is None: fim.wcs = None else: fim.wcs = wcs.deepcopy() if image_sizeof(fim) >= 1.0: log.debug( "create_image_from_array: created %s image of shape %s, size %.3f (GB)" % (fim.data.dtype, str(fim.shape), image_sizeof(fim))) assert isinstance(fim, Image), "Type is %s" % type(fim) return fim
def normalize_sumwt(im: Image, sumwt) -> Image: """Normalize out the sum of weights :param im: Image, im.data has shape [nchan, npol, ny, nx] :param sumwt: Sum of weights [nchan, npol] """ nchan, npol, _, _ = im.data.shape assert nchan == sumwt.shape[0] assert npol == sumwt.shape[1] for chan in range(nchan): for pol in range(npol): if sumwt[chan, pol] > 0.0: im.data[chan, pol, :, :] /= sumwt[chan, pol] else: im.data[chan, pol, :, :] = 0.0 return im
def replicate_image(im: Image, polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.array([1e8])) \ -> Image: """ Make a new canonical shape Image, extended along third and fourth axes by replication. The order of the data is [chan, pol, dec, ra] :param frequency: :param im: :param polarisation_frame: Polarisation_frame :param nchan: Number of spectral channels :return: Image """ if len(im.data.shape) == 2: fim = Image() newwcs = WCS(naxis=4) newwcs.wcs.crpix = [ im.wcs.wcs.crpix[0] + 1.0, im.wcs.wcs.crpix[1] + 1.0, 1.0, 1.0 ] newwcs.wcs.cdelt = [im.wcs.wcs.cdelt[0], im.wcs.wcs.cdelt[1], 1.0, 1.0] newwcs.wcs.crval = [ im.wcs.wcs.crval[0], im.wcs.wcs.crval[1], 1.0, frequency[0] ] newwcs.wcs.ctype = [ im.wcs.wcs.ctype[0], im.wcs.wcs.ctype[1], 'STOKES', 'FREQ' ] nchan = len(frequency) npol = polarisation_frame.npol fim.polarisation_frame = polarisation_frame fim.wcs = newwcs fshape = [nchan, npol, im.data.shape[1], im.data.shape[0]] fim.data = numpy.zeros(fshape) log.info("replicate_image: replicating shape %s to %s" % (im.data.shape, fim.data.shape)) for i3 in range(nchan): fim.data[i3, 0, :, :] = im.data[:, :] return fim else: return im
def create_empty_image_like(im: Image) -> Image: """ Create an empty image like another in shape and wcs :param im: :return: Image """ assert type(im) == Image, "Type is %s" % type(im) fim = Image() fim.polarisation_frame = im.polarisation_frame fim.data = numpy.zeros_like(im.data) if im.wcs is None: fim.wcs = None else: fim.wcs = copy.deepcopy(im.wcs) if image_sizeof(im) >= 1.0: log.debug("create_empty_image_like: created %s image of shape %s, size %.3f (GB)" % (fim.data.dtype, str(fim.shape), image_sizeof(fim))) assert type(fim) == Image, "Type is %s" % type(fim) return fim
def copy_image(im: Image) -> Image: """ Create an image from an array Performs deepcopy of data, breaking reference semantics :param im: :return: Image """ assert isinstance(im, Image), "Type is %s" % type(im) fim = Image() fim.polarisation_frame = im.polarisation_frame fim.data = copy.deepcopy(im.data) if im.wcs is None: fim.wcs = None else: fim.wcs = copy.deepcopy(im.wcs) if image_sizeof(fim) >= 1.0: log.debug("copy_image: copied %s image of shape %s, size %.3f (GB)" % (fim.data.dtype, str(fim.shape), image_sizeof(fim))) assert type(fim) == Image return fim
def deconvolve_cube(dirty: Image, psf: Image, **kwargs): """ Clean using a variety of algorithms Functions that clean a dirty image using a point spread function. The algorithms available are: hogbom: Hogbom CLEAN See: Hogbom CLEAN A&A Suppl, 15, 417, (1974) msclean: MultiScale CLEAN See: Cornwell, T.J., Multiscale CLEAN (IEEE Journal of Selected Topics in Sig Proc, 2008 vol. 2 pp. 793-801) mfsmsclean: MultiScale Multi-Frequency See: U. Rau and T. J. Cornwell, “A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry,” A&A 532, A71 (2011). For example:: comp, residual = deconvolve_cube(dirty, psf, niter=1000, gain=0.7, algorithm='msclean', scales=[0, 3, 10, 30], threshold=0.01) :param dirty: Image dirty image :param psf: Image Point Spread Function :param window: Window image (Bool) - clean where True :param algorithm: Cleaning algorithm: 'msclean'|'hogbom'|'mfsmsclean' :param gain: loop gain (float) 0.7 :param threshold: Clean threshold (0.0) :param fracthres: Fractional threshold (0.01) :param scales: Scales (in pixels) for multiscale ([0, 3, 10, 30]) :param nmoments: Number of frequency moments (default 3) :param findpeak: Method of finding peak in mfsclean: 'Algorithm1'|'ASKAPSoft'|'CASA'|'ARL', Default is ARL. :returns: componentimage, residual """ assert type(dirty) == Image, "Type is %s" % (type(dirty)) assert type(psf) == Image, "Type is %s" % (type(psf)) window = get_parameter(kwargs, 'window', None) if window == 'quarter': qx = dirty.shape[3] // 4 qy = dirty.shape[2] // 4 window = numpy.zeros_like(dirty.data) window[..., (qy + 1):3 * qy, (qx + 1):3 * qx] = 1.0 log.info('deconvolve_cube: Cleaning inner quarter of each sky plane') else: window = None psf_support = get_parameter(kwargs, 'psf_support', None) if isinstance(psf_support, int): if (psf_support < psf.shape[2] // 2) and ( (psf_support < psf.shape[3] // 2)): centre = [psf.shape[2] // 2, psf.shape[3] // 2] psf.data = psf.data[..., (centre[0] - psf_support):(centre[0] + psf_support), (centre[1] - psf_support):(centre[1] + psf_support)] log.info('deconvolve_cube: PSF support = +/- %d pixels' % (psf_support)) algorithm = get_parameter(kwargs, 'algorithm', 'msclean') if algorithm == 'msclean': log.info( "deconvolve_cube: Multi-scale clean of each polarisation and channel separately" ) gain = get_parameter(kwargs, 'gain', 0.7) assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2" thresh = get_parameter(kwargs, 'threshold', 0.0) assert thresh >= 0.0 niter = get_parameter(kwargs, 'niter', 100) assert niter > 0 scales = get_parameter(kwargs, 'scales', [0, 3, 10, 30]) fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.01) assert 0.0 < fracthresh < 1.0 comp_array = numpy.zeros_like(dirty.data) residual_array = numpy.zeros_like(dirty.data) for channel in range(dirty.data.shape[0]): for pol in range(dirty.data.shape[1]): if psf.data[channel, pol, :, :].max(): log.info("deconvolve_cube: Processing pol %d, channel %d" % (pol, channel)) if window is None: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ msclean(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], None, gain, thresh, niter, scales, fracthresh) else: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ msclean(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], window[channel, pol, :, :], gain, thresh, niter, scales, fracthresh) else: log.info("deconvolve_cube: Skipping pol %d, channel %d" % (pol, channel)) comp_image = create_image_from_array(comp_array, dirty.wcs) residual_image = create_image_from_array(residual_array, dirty.wcs) elif algorithm == 'msmfsclean' or algorithm == 'mfsmsclean': findpeak = get_parameter(kwargs, "findpeak", 'ARL') log.info( "deconvolve_cube: Multi-scale multi-frequency clean of each polarisation separately" ) nmoments = get_parameter(kwargs, "nmoments", 3) assert nmoments > 0, "Number of frequency moments must be greater than zero" dirty_taylor = calculate_image_frequency_moments(dirty, nmoments=nmoments) psf_taylor = calculate_image_frequency_moments(psf, nmoments=2 * nmoments) gain = get_parameter(kwargs, 'gain', 0.7) assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2" thresh = get_parameter(kwargs, 'threshold', 0.0) assert thresh >= 0.0 niter = get_parameter(kwargs, 'niter', 100) assert niter > 0 scales = get_parameter(kwargs, 'scales', [0, 3, 10, 30]) fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1) assert 0.0 < fracthresh < 1.0 comp_array = numpy.zeros(dirty_taylor.data.shape) residual_array = numpy.zeros(dirty_taylor.data.shape) for pol in range(dirty_taylor.data.shape[1]): if psf_taylor.data[0, pol, :, :].max(): log.info("deconvolve_cube: Processing pol %d" % (pol)) if window is None: comp_array[:, pol, :, :], residual_array[:, pol, :, :] = \ msmfsclean(dirty_taylor.data[:, pol, :, :], psf_taylor.data[:, pol, :, :], None, gain, thresh, niter, scales, fracthresh, findpeak) else: comp_array[:, pol, :, :], residual_array[:, pol, :, :] = \ msmfsclean(dirty_taylor.data[:, pol, :, :], psf_taylor.data[:, pol, :, :], window[:, pol, :, :], gain, thresh, niter, scales, fracthresh, findpeak) else: log.info("deconvolve_cube: Skipping pol %d" % (pol)) comp_image = create_image_from_array(comp_array, dirty_taylor.wcs) residual_image = create_image_from_array(residual_array, dirty_taylor.wcs) return_moments = get_parameter(kwargs, "return_moments", False) if not return_moments: log.info("Deconvolve_cube: calculating spectral cubes") comp_image = calculate_image_from_frequency_moments( dirty, comp_image) residual_image = calculate_image_from_frequency_moments( dirty, residual_image) else: log.info("Deconvolve_cube: constructed moment cubes") elif algorithm == 'hogbom': log.info( "deconvolve_cube: Hogbom clean of each polarisation and channel separately" ) gain = get_parameter(kwargs, 'gain', 0.7) assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2" thresh = get_parameter(kwargs, 'threshold', 0.0) assert thresh >= 0.0 niter = get_parameter(kwargs, 'niter', 100) assert niter > 0 fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1) assert 0.0 <= fracthresh < 1.0 comp_array = numpy.zeros(dirty.data.shape) residual_array = numpy.zeros(dirty.data.shape) for channel in range(dirty.data.shape[0]): for pol in range(dirty.data.shape[1]): if psf.data[channel, pol, :, :].max(): log.info("deconvolve_cube: Processing pol %d, channel %d" % (pol, channel)) if window is None: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], None, gain, thresh, niter, fracthresh) else: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], window[channel, pol, :, :], gain, thresh, niter, fracthresh) else: log.info("deconvolve_cube: Skipping pol %d, channel %d" % (pol, channel)) comp_image = create_image_from_array(comp_array, dirty.wcs) residual_image = create_image_from_array(residual_array, dirty.wcs) else: raise ValueError('deconvolve_cube: Unknown algorithm %s' % algorithm) return comp_image, residual_image
def image_sizeof(im: Image): """ Return size in GB """ return im.size()
def deconvolve_cube_complex(dirty: Image, psf: Image, **kwargs) -> (Image, Image): """ Clean using the complex Hogbom algorithm for polarised data (2016MNRAS.462.3483P) The algorithm available is: hogbom-complex: See: Pratley L. & Johnston-Hollitt M., (2016), MNRAS, 462, 3483. This code is based upon the deconvolve_cube code for standard Hogbom clean available in ARL. Args: dirty (numpy array): The dirty image, i.e., the image to be deconvolved. psf (numpy array): The point spread-function. window (float): Regions where clean components are allowed. If True, entire dirty Image is allowed. algorithm (str): Cleaning algorithm: 'hogbom-complex' only. gain (float): The "loop gain", i.e., the fraction of the brightest pixel that is removed in each iteration. threshold (float): Cleaning stops when the maximum of the absolute deviation of the residual is less than this value. niter (int): Maximum number of components to make if the threshold `thresh` is not hit. fractional_threshold (float): The predefined fractional threshold at which to stop cleaning. Returns: comp_image: clean component image. residual_image: residual image. """ assert isinstance(dirty, Image), "Type is %s" % (type(dirty)) assert isinstance(psf, Image), "Type is %s" % (type(psf)) window_shape = get_parameter(kwargs, 'window_shape', None) if window_shape == 'quarter': qx = dirty.shape[3] // 4 qy = dirty.shape[2] // 4 window = np.zeros_like(dirty.data) window[..., (qy + 1):3 * qy, (qx + 1):3 * qx] = 1.0 log.info('deconvolve_cube_complex: Cleaning inner quarter of each sky plane') else: window = None psf_support = get_parameter(kwargs, 'psf_support', None) if isinstance(psf_support, int): if (psf_support < psf.shape[2] // 2) and ((psf_support < psf.shape[3] // 2)): centre = [psf.shape[2] // 2, psf.shape[3] // 2] psf.data = psf.data[..., (centre[0] - psf_support):(centre[0] + psf_support), (centre[1] - psf_support):(centre[1] + psf_support)] log.info('deconvolve_cube_complex: PSF support = +/- %d pixels' % (psf_support)) algorithm = get_parameter(kwargs, 'algorithm', 'msclean') if algorithm == 'hogbom-complex': log.info("deconvolve_cube_complex: Hogbom-complex clean of each polarisation and channel separately") gain = get_parameter(kwargs, 'gain', 0.7) assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2" thresh = get_parameter(kwargs, 'threshold', 0.0) assert thresh >= 0.0 niter = get_parameter(kwargs, 'niter', 100) assert niter > 0 fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1) assert 0.0 <= fracthresh < 1.0 comp_array = np.zeros(dirty.data.shape) residual_array = np.zeros(dirty.data.shape) for channel in range(dirty.data.shape[0]): for pol in range(dirty.data.shape[1]): if pol == 0 or pol == 3: if psf.data[channel, pol, :, :].max(): log.info("deconvolve_cube_complex: Processing pol %d, channel %d" % (pol, channel)) if window is None: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], None, gain, thresh, niter, fracthresh) else: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], window[channel, pol, :, :], gain, thresh, niter, fracthresh) else: log.info("deconvolve_cube_complex: Skipping pol %d, channel %d" % (pol, channel)) if pol == 1: if psf.data[channel, 1:2, :, :].max(): log.info("deconvolve_cube_complex: Processing pol 1 and 2, channel %d" % (channel)) if window is None: comp_array[channel, 1, :, :], comp_array[channel, 2, :, :], residual_array[channel, 1, :, :], residual_array[channel, 2, :, :] = hogbom_complex(dirty.data[channel, 1, :, :], dirty.data[channel, 2, :, :], psf.data[channel, 1, :, :], psf.data[channel, 2, :, :], None, gain, thresh, niter, fracthresh) else: comp_array[channel, 1, :, :], comp_array[channel, 2, :, :], residual_array[channel, 1, :, :], residual_array[channel, 2, :, :] = hogbom_complex(dirty.data[channel, 1, :, :], dirty.data[channel, 2, :, :], psf.data[channel, 1, :, :], psf.data[channel, 2, :, :], window[channel, pol, :, :], gain, thresh, niter, fracthresh) else: log.info("deconvolve_cube_complex: Skipping pol 1 and 2, channel %d" % (channel)) if pol == 2: continue comp_image = create_image_from_array(comp_array, dirty.wcs) residual_image = create_image_from_array(residual_array, dirty.wcs) else: raise ValueError('deconvolve_cube_complex: Unknown algorithm %s' % algorithm) return comp_image, residual_image