Example #1
0
def test_tf1_apricot():
    detector_module = import_module("armory.baseline_models.tf_graph.mscoco_frcnn")
    detector_fn = getattr(detector_module, "get_art_model")
    detector = detector_fn(model_kwargs={}, wrapper_kwargs={})

    test_dataset = adversarial_datasets.apricot_dev_adversarial(
        split_type="adversarial",
        epochs=1,
        batch_size=1,
        dataset_dir=DATASET_DIR,
        shuffle_files=False,
    )

    list_of_ys = []
    list_of_ypreds = []
    for x, y in test_dataset:
        y_pred = detector.predict(x)[0]
        list_of_ys.append(y)
        list_of_ypreds.append(y_pred)

    average_precision_by_class = object_detection_AP_per_class(
        list_of_ys, list_of_ypreds
    )
    mAP = np.fromiter(average_precision_by_class.values(), dtype=float).mean()
    for class_id in [13, 15, 64]:
        assert average_precision_by_class[class_id] > 0.79
    assert mAP > 0.08
Example #2
0
def test_tf1_coco():
    if not os.path.exists(os.path.join(DATASET_DIR, "coco", "2017", "1.1.0")):
        pytest.skip("coco2017 dataset not downloaded.")

    detector_module = import_module(
        "armory.baseline_models.tf_graph.mscoco_frcnn")
    detector_fn = getattr(detector_module, "get_art_model")
    detector = detector_fn(model_kwargs={}, wrapper_kwargs={})

    NUM_TEST_SAMPLES = 10
    dataset = datasets.coco2017(split="validation", shuffle_files=False)

    list_of_ys = []
    list_of_ypreds = []
    for _ in range(NUM_TEST_SAMPLES):
        x, y = dataset.get_batch()
        y_pred = detector.predict(x)
        list_of_ys.extend(y)
        list_of_ypreds.extend(y_pred)

    average_precision_by_class = object_detection_AP_per_class(
        list_of_ys, list_of_ypreds)
    mAP = np.fromiter(average_precision_by_class.values(), dtype=float).mean()
    for class_id in [0, 2, 5, 9, 10]:
        assert average_precision_by_class[class_id] > 0.6
    assert mAP > 0.1
Example #3
0
def test_mAP():
    labels = {"labels": np.array([2]), "boxes": np.array([[0.1, 0.1, 0.7, 0.7]])}

    preds = {
        "labels": np.array([2, 9]),
        "boxes": np.array([[0.1, 0.1, 0.7, 0.7], [0.5, 0.4, 0.9, 0.9]]),
        "scores": np.array([0.8, 0.8]),
    }

    ap_per_class = metrics.object_detection_AP_per_class([labels], [preds])
    assert ap_per_class[9] == 0
    assert ap_per_class[2] >= 0.99
Example #4
0
def test_pytorch_xview_pretrained():
    detector_module = import_module(
        "armory.baseline_models.pytorch.xview_frcnn")
    detector_fn = getattr(detector_module, "get_art_model")
    weights_path = maybe_download_weights_from_s3(
        "xview_model_state_dict_epoch_99_loss_0p67")
    detector = detector_fn(
        model_kwargs={},
        wrapper_kwargs={},
        weights_path=weights_path,
    )

    NUM_TEST_SAMPLES = 250
    dataset_config = {
        "batch_size": 1,
        "framework": "numpy",
        "module": "armory.data.datasets",
        "name": "xview",
    }
    test_dataset = load_dataset(
        dataset_config,
        epochs=1,
        split="test",
        num_batches=NUM_TEST_SAMPLES,
        shuffle_files=False,
    )

    list_of_ys = []
    list_of_ypreds = []
    for x, y in test_dataset:
        y_pred = detector.predict(x)
        list_of_ys.extend(y)
        list_of_ypreds.extend(y_pred)

    average_precision_by_class = object_detection_AP_per_class(
        list_of_ys, list_of_ypreds)
    mAP = np.fromiter(average_precision_by_class.values(), dtype=float).mean()
    for class_id in [4, 23, 33, 39]:
        assert average_precision_by_class[class_id] > 0.9
    assert mAP > 0.25
Example #5
0
def test_tf1_apricot():
    if not os.path.isdir(os.path.join(DATASET_DIR, "apricot_dev", "1.0.1")):
        pytest.skip("apricot dataset not locally available.")

    detector_module = import_module(
        "armory.baseline_models.tf_graph.mscoco_frcnn")
    detector_fn = getattr(detector_module, "get_art_model")
    detector = detector_fn(model_kwargs={}, wrapper_kwargs={})

    dev_dataset = adversarial_datasets.apricot_dev_adversarial(
        split="frcnn+ssd+retinanet",
        epochs=1,
        batch_size=1,
        dataset_dir=DATASET_DIR,
        shuffle_files=False,
    )

    list_of_ys = []
    list_of_ypreds = []
    for x, y in dev_dataset:
        y_pred = detector.predict(x)
        list_of_ys.append(y)
        list_of_ypreds.append(y_pred)

    average_precision_by_class = object_detection_AP_per_class(
        list_of_ys, list_of_ypreds)
    mAP = np.fromiter(average_precision_by_class.values(), dtype=float).mean()
    for class_id in [13, 15, 64]:
        assert average_precision_by_class[class_id] > 0.79
    assert mAP > 0.08

    patch_targeted_AP_by_class = apricot_patch_targeted_AP_per_class(
        list_of_ys, list_of_ypreds)
    expected_patch_targeted_AP_by_class = {
        1: 0.18,
        17: 0.18,
        27: 0.27,
        33: 0.55,
        44: 0.14,
    }
    for class_id, expected_AP in expected_patch_targeted_AP_by_class.items():
        assert np.abs(patch_targeted_AP_by_class[class_id] -
                      expected_AP) < 0.03

    test_dataset = adversarial_datasets.apricot_test_adversarial(
        split="frcnn",
        epochs=1,
        batch_size=1,
        dataset_dir=DATASET_DIR,
        shuffle_files=False,
    )

    list_of_ys = []
    list_of_ypreds = []
    for x, y in test_dataset:
        y_pred = detector.predict(x)
        list_of_ys.append(y)
        list_of_ypreds.append(y_pred)

    average_precision_by_class = object_detection_AP_per_class(
        list_of_ys, list_of_ypreds)
    mAP = np.fromiter(average_precision_by_class.values(), dtype=float).mean()
    for class_id in [2, 3, 4, 6, 15, 72, 76]:
        assert average_precision_by_class[class_id] > 0.3
    assert mAP > 0.08

    patch_targeted_AP_by_class = apricot_patch_targeted_AP_per_class(
        list_of_ys, list_of_ypreds)
    expected_patch_targeted_AP_by_class = {
        1: 0.22,
        17: 0.18,
        27: 0.4,
        44: 0.09,
        53: 0.27,
        85: 0.43,
    }
    for class_id, expected_AP in expected_patch_targeted_AP_by_class.items():
        assert np.abs(patch_targeted_AP_by_class[class_id] -
                      expected_AP) < 0.03