def test_dirichlet():

    obj = test('dirichlet', 'dirichlet')

    obj._A_q1, obj._A_q2 = af.Array([100]), af.Array([100])

    obj._A_q1 = af.tile(obj._A_q1, 1, 1, obj.q1_center.shape[2])
    obj._A_q2 = af.tile(obj._A_q2, 1, 1, obj.q1_center.shape[2])

    obj.dt = 0.001

    obj.f = af.constant(0,
                        obj.q1_center.shape[0],
                        obj.q1_center.shape[1],
                        obj.q1_center.shape[2],
                        dtype=af.Dtype.f64)

    apply_bcs_f(obj)

    expected = af.constant(0,
                           obj.q1_center.shape[0],
                           obj.q1_center.shape[1],
                           obj.q1_center.shape[2],
                           dtype=af.Dtype.f64)

    N_g = obj.N_ghost

    # Only ingoing characteristics should be affected:
    expected[:N_g] = af.select(obj.q1_center < obj.q1_start, 1, expected)[:N_g]
    expected[:, :N_g] = af.select(obj.q2_center < obj.q2_start, 2,
                                  expected)[:, :N_g]

    assert (af.max(af.abs(obj.f[:, N_g:-N_g] - expected[:, N_g:-N_g])) < 5e-14)
    assert (af.max(af.abs(obj.f[N_g:-N_g, :] - expected[N_g:-N_g, :])) < 5e-14)
Example #2
0
def np2af(data, dtype=None):
    # return af.Array(data.ctypes.data, data.shape, data.dtype.char)
    print(type(data))
    if dtype:
        return af.Array(data.ctypes.data, data.shape, dtype)
    else:
        return af.Array(data.ctypes.data, data.shape, data.dtype.char)
    def _split_fourier_cuda(self, signal: Signal, step):
        '''
            This function is called by split_fourier,and should not be used outside

        :param signal: signal to traverse the span
        :param step: the step of split fourier
        :return: None
        '''
        af.set_backend('cuda')

        freq = fftfreq(len(signal.data_sample[0, :]),
                       (signal.sps * signal.symbol_rate_in_hz)**(-1))

        freq = af.Array(freq.ctypes.data, freq.shape, freq.dtype.char)

        signal_x = np.asarray(signal.data_sample[0, :])
        signal_y = np.asarray(signal.data_sample[1, :])

        signal_x = af.Array(signal_x.ctypes.data,
                            signal_x.shape,
                            dtype=signal_x.dtype.char)
        signal_y = af.Array(signal_y.ctypes.data,
                            signal_x.shape,
                            dtype=signal_y.dtype.char)

        Disper = (1j / 2) * self.beta2 * (2 * np.pi * freq)**2 * step + (
            1j / 6) * self.beta3 * (
                (2 * np.pi * freq)**3 * step) - self.alphalin / 2 * step

        dz_Eff = (1 - np.exp(-self.alphalin * step)) / self.alphalin
        step_number = np.ceil(self.length / step)

        for number in range(int(step_number)):
            print(number)
            if number == step_number - 1:
                # dz = step
                dz = self.length - (step_number - 1) * step
                dz_Eff = (1 - np.exp(-self.alphalin * dz)) / self.alphalin
                Disper = (1j / 2) * self.beta2 * (2 * np.pi * freq)**2 * dz + (
                    1j / 6) * self.beta3 * (
                        (2 * np.pi * freq)**3 * dz) - self.alphalin / 2 * step
            signal_x, signal_y = self.linear(signal_x, signal_y, Disper)
            energy = signal_x * af.conjg(signal_x) + signal_y * af.conjg(
                signal_y)
            signal_x, signal_y = self.nonlinear(energy, signal_x, signal_y,
                                                dz_Eff)
            signal_x, signal_y = self.linear(signal_x, signal_y, Disper)

        signal_x_array = np.array(signal_x.to_list())
        signal_y_array = np.array(signal_y.to_list())

        signal_x_array = signal_x_array[:, 0] + 1j * signal_x_array[:, 1]

        signal_y_array = signal_y_array[:, 0] + 1j * signal_y_array[:, 1]

        signal.data_sample[0, :] = signal_x_array
        signal.data_sample[1, :] = signal_y_array
Example #4
0
def simple_array(verbose=False):
    display_func = _util.display_func(verbose)
    print_func = _util.print_func(verbose)

    a = af.Array([1, 2, 3])
    display_func(a)
    display_func(a.T)
    display_func(a.H)
    print_func(a.shape)

    b = a.as_type(af.Dtype.s32)
    display_func(b)

    print_func(a.elements(), a.type(), a.dims(), a.numdims())
    print_func(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row())
    print_func(a.is_complex(), a.is_real(), a.is_double(), a.is_single())
    print_func(a.is_real_floating(), a.is_floating(), a.is_integer(),
               a.is_bool())

    a = af.Array(host.array("i", [4, 5, 6]))
    display_func(a)
    print_func(a.elements(), a.type(), a.dims(), a.numdims())
    print_func(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row())
    print_func(a.is_complex(), a.is_real(), a.is_double(), a.is_single())
    print_func(a.is_real_floating(), a.is_floating(), a.is_integer(),
               a.is_bool())

    a = af.Array(host.array("I", [7, 8, 9] * 3), (3, 3))
    display_func(a)
    print_func(a.elements(), a.type(), a.dims(), a.numdims())
    print_func(a.is_empty(), a.is_scalar(), a.is_column(), a.is_row())
    print_func(a.is_complex(), a.is_real(), a.is_double(), a.is_single())
    print_func(a.is_real_floating(), a.is_floating(), a.is_integer(),
               a.is_bool())

    c = a.to_ctype()
    for n in range(a.elements()):
        print_func(c[n])

    c, s = a.to_ctype(True, True)
    for n in range(a.elements()):
        print_func(c[n])
    print_func(s)

    arr = a.to_array()
    lst = a.to_list(True)

    print_func(arr)
    print_func(lst)

    print_func(a.is_sparse())
Example #5
0
def main2():
    data = af.Array([0, 1, 2, 2.5, 8, 9, 20, 21, 22])
    labels = af.Array([0, 0, 0, 0, 1, 1, 2, 2, 2]).as_type(af.Dtype.u32)
    num_labels = 2
    # query = af.Array([1.5])
    query = af.Array([1.5, 12])
    clf = AfKNearestNeighbors(num_nearest=5, weight_by_dist=False)
    # clf = AfKNearestNeighbors(num_nearest=data.dims()[0], weight_by_dist=True)
    clf.train(data, labels)
    outputs = clf.predict(query)
    outputs_proba = clf.predict_proba(query)
    print('outputs:', outputs)
    print('outputs_proba:', outputs_proba)
    print('ndarray version:\n', outputs_proba.to_ndarray())
Example #6
0
    def __reshape__(self, newshape, order='C'):
        if (order is not 'C'):
            raise NotImplementedError
        if isinstance(newshape, numbers.Number):
            newshape = (newshape, )
        # Replace a possible -1 with the
        if -1 in newshape:
            newshape = list(newshape)
            i = newshape.index(-1)
            newshape[i] = 1
            if -1 in newshape:
                raise ValueError('Only one -1 allowed in shape')
            newshape[i] = self.size / numpy.prod(newshape)
        if self.size != numpy.prod(newshape):
            raise ValueError('total size of new array must be unchanged')
        if len(newshape) != 0:
            # No need to modify the af_array for empty shapes
            # af_shape = numpy.array(pu.c2f(newshape), dtype=pu.dim_t)
            # s = arrayfire.Array()
            # arrayfire.backend.get().af_moddims(ctypes.pointer(s.arr), self.d_array.arr, af_shape.size, ctypes.c_void_p(af_shape.ctypes.data))
            # self.d_array = s
            if tuple(newshape) == self.shape:
                # No need to do anything
                return
            af_shape = numpy.array(pu.c2f(newshape), dtype=pu.dim_t)
            s = arrayfire.Array()
            arrayfire.backend.get().af_moddims(
                ctypes.pointer(s.arr), self.d_array.arr, af_shape.size,
                ctypes.c_void_p(af_shape.ctypes.data))
            self.d_array = s

        self._shape = tuple(newshape)
def forward(nn_np, data):
    """
    Given a dictionary representing a feed forward neural net and an input data matrix compute the network's output and store it within the dictionary
    :param nn: neural network dictionary
    :param data: a numpy n by m matrix where m in the number of input units in nn
    :return: the output layer activations
    """
    nn = nn_np
    nn['activations'] = []
    afData = data.ctypes.data, data.shape, data.dtype.char
    for i in range(data.shape[0]):
        nn['activations'].append(
            af.Array(data[i].ctypes.data, data[i].shape, data[i].dtype.char))
    nn['zs'] = []
    for w, s, b in map(None, nn['weights'], nn['nonlin'], nn['biases']):

        #print af.transpose(nn['activations'][-1])
        print nn['activations'][-1]
        print ""
        print w

        z = af.dot(nn['activations'][-1], w)
        nn['zs'].append(af.transpose(z))
        nn['activations'].append(s[0](af.transpose(z)))
    return nn['activations'][-1]
Example #8
0
def f_left(f, t, q1, q2, p1, p2, p3, params):

    k = params.boltzmann_constant
    E_upper = params.E_band
    T = params.initial_temperature
    mu = params.initial_mu

    t = params.current_time
    omega = 2. * np.pi * params.AC_freq

    q1_start = af.Array([domain.q1_start])
    q2_start = af.Array([domain.q2_start])
    q2_end = af.Array([domain.q2_end])

    #x_start, y_start = coords.get_cartesian_coords(q1_start, q2_start)
    #x_start, y_end   = coords.get_cartesian_coords(q1_start, q2_end)
    y_start = -24.
    y_end = -4.6

    contact_width = y_end - y_start  #19.486

    if (params.source_type == 'AC'):
        vel_drift_x_out = -params.vel_drift_y_in / contact_width * np.sin(
            omega * t)
    elif (params.source_type == 'DC'):
        vel_drift_x_out = -params.vel_drift_y_in / contact_width
    else:
        raise NotImplementedError('Unsupported source_type')

    if (params.p_space_grid == 'cartesian'):
        p_x = p1
        p_y = p2
    elif (params.p_space_grid == 'polar2D'):
        p_x = p1 * af.cos(p2)
        p_y = p1 * af.sin(p2)
    else:
        raise NotImplementedError('Unsupported coordinate system in p_space')

    fermi_dirac_out = (1. / (af.exp(
        (E_upper - vel_drift_x_out * p_x - mu) / (k * T)) + 1.))
    if params.zero_temperature:
        fermi_dirac_out = fermi_dirac_out - 0.5

    f_left = fermi_dirac_out

    af.eval(f_left)
    return (f_left)
Example #9
0
 def testFromArrayfire(self):
     a = af.Array([1, 2, 3, 4])
     b = Array.from_arrayfire(a)
     self.assertNotEqual(a.arr, 0)
     self.assertNotEqual(b.arr_reference, 0)
     self.assertNotEqual(a.arr, b.arr_reference)
     np.testing.assert_array_equal(np.asarray(a.to_list()),
                                   np.asarray(b.to_list()))
Example #10
0
def simple_device(verbose=False):
    display_func = _util.display_func(verbose)
    print_func   = _util.print_func(verbose)
    print_func(af.device_info())
    print_func(af.get_device_count())
    print_func(af.is_dbl_supported())
    af.sync()

    curr_dev = af.get_device()
    print_func(curr_dev)
    for k in range(af.get_device_count()):
        af.set_device(k)
        dev = af.get_device()
        assert(k == dev)

        print_func(af.is_dbl_supported(k))

        af.device_gc()

        mem_info_old = af.device_mem_info()

        a = af.randu(100, 100)
        af.sync(dev)
        mem_info = af.device_mem_info()
        assert(mem_info['alloc']['buffers'] == 1 + mem_info_old['alloc']['buffers'])
        assert(mem_info[ 'lock']['buffers'] == 1 + mem_info_old[ 'lock']['buffers'])

    af.set_device(curr_dev)

    a = af.randu(10,10)
    display_func(a)
    dev_ptr = af.get_device_ptr(a)
    print_func(dev_ptr)
    b = af.Array(src=dev_ptr, dims=a.dims(), dtype=a.dtype(), is_device=True)
    display_func(b)

    c = af.randu(10,10)
    af.lock_array(c)
    af.unlock_array(c)

    a = af.constant(1, 3, 3)
    b = af.constant(2, 3, 3)
    af.eval(a)
    af.eval(b)
    print_func(a)
    print_func(b)
    c = a + b
    d = a - b
    af.eval(c, d)
    print_func(c)
    print_func(d)

    print_func(af.set_manual_eval_flag(True))
    assert(af.get_manual_eval_flag() == True)
    print_func(af.set_manual_eval_flag(False))
    assert(af.get_manual_eval_flag() == False)

    display_func(af.is_locked_array(a))
Example #11
0
def setup_mnist(frac, expand_labels):
    root_path = os.path.dirname(os.path.abspath(__file__))
    file_path = root_path + '/../../assets/examples/data/mnist/'
    idims, idata = read_idx(file_path + 'images-subset')
    ldims, ldata = read_idx(file_path + 'labels-subset')

    idims.reverse()
    numdims = len(idims)
    images = af.Array(idata, tuple(idims))

    R = af.randu(10000, 1)
    cond = R < min(frac, 0.8)
    train_indices = af.where(cond)
    test_indices = af.where(~cond)

    train_images = af.lookup(images, train_indices, 2) / 255
    test_images = af.lookup(images, test_indices, 2) / 255

    num_classes = 10
    num_train = train_images.dims()[2]
    num_test = test_images.dims()[2]

    if expand_labels:
        train_labels = af.constant(0, num_classes, num_train)
        test_labels = af.constant(0, num_classes, num_test)

        h_train_idx = train_indices.to_list()
        h_test_idx = test_indices.to_list()

        for i in range(num_train):
            train_labels[ldata[h_train_idx[i]], i] = 1

        for i in range(num_test):
            test_labels[ldata[h_test_idx[i]], i] = 1

    else:
        labels = af.Array(ldata, tuple(ldims))
        train_labels = labels[train_indices]
        test_labels = labels[test_indices]

    return (num_classes, num_train, num_test, train_images, test_images,
            train_labels, test_labels)
Example #12
0
def test_dx_dxi_analytical():
    '''
    Test to check the dx_dxi_analytical in wave equation module for an element
    and compare it with an analytical value.
    '''
    threshold = 1e-14

    nodes = af.Array([2, 6])
    check_analytical_dx_dxi = af.sum(
        af.abs(wave_equation.dx_dxi_analytical(nodes, 0) - 2)) <= threshold
    assert check_analytical_dx_dxi
Example #13
0
def af_gaussianDerivative1D(s,order):
  radius = int(round(3*s + 0.5*order))
  size = radius*2+1
  csize = ct.c_int(size)
  csigma = ct.c_double(s)
  d_k = af.Array()
  af.safe_call(af.backend.get().af_gaussian_kernel(ct.pointer(d_k.arr),csize,1,csigma,0))
  if order == 1:
    afx=af.range(size)-radius
    return -afx/s/s*d_k
  if order == 2:
    afx=((af.range(size)-radius)**2-s*s)
    return afx/(s**4)*d_k
  return d_k
Example #14
0
def test_gauss_weights():
    '''
    Test to check the gaussian weights calculated.
    '''
    threshold = 2e-8
    analytical_gauss_weights = af.Array([0.23692688505618908, 0.47862867049936647,\
                                         0.5688888888888889, 0.47862867049936647, \
                                         0.23692688505618908
                                        ]
                                       )
    calculated_gauss_weights = lagrange.gaussian_weights(5)

    assert af.max(af.abs(analytical_gauss_weights - calculated_gauss_weights))\
                                                                  <= threshold
Example #15
0
def test():
  x1 =np.arange(2000)
  x = af.Array(x1.ctypes.data, x1.shape, x1.dtype.char)
  alpha = 2/3
  s_old = x[0]

  a = time.time()
  for i in range(1, 2000):
    s = alpha * x[i] + (1- alpha) * s_old
    s_old = s
  #time.sleep(1)
  b = time.time()
  print(b - a)
  return s
Example #16
0
def visitbatches(nn, batches, labelBatches, errlist, it=1000):
    afBatches = []
    for group in batches:
	gp = []
	for item in group:
		tmp = []
		tmp.append(item[0])
		tmp.append(item[1])
	
		gp.append(af.Array(tmp))
	afBatches.append(gp)
    
    for c in range(it):
	    #print "len of things " + str(len(nn)) + " " + str(len(batches[0]))
            nnDif.master_node(nn, afBatches, labelBatches)
Example #17
0
    def forward(self, end):
        if len(self.layers) is 0:
            return self.data
        out = af.Array()
        data = self.data
        for key in self.layers.viewkeys():
            if key in self.params:
                data = self.layers[key](image = data,
                                        weights = self.params[key]['weights'],
                                        biases = self.params[key]['biases'])
            else:
                data = self.layers[key](image = data)

            if key is end:
                return data
        return data
Example #18
0
 def imag(self):
     ret_type = numpy.real(numpy.zeros((), dtype=self.dtype)).dtype
     shape = list(self.shape)
     if not numpy.issubdtype(self.dtype, numpy.complexfloating):
         return afnumpy.zeros(self.shape)
     shape[-1] *= 2
     dims = numpy.array(pu.c2f(shape), dtype=pu.dim_t)
     s = arrayfire.Array()
     arrayfire.backend.get().af_device_array(
         ctypes.pointer(s.arr), ctypes.c_void_p(self.d_array.device_ptr()),
         self.ndim, ctypes.c_void_p(dims.ctypes.data),
         pu.typemap(ret_type).value)
     arrayfire.backend.get().af_retain_array(ctypes.pointer(s.arr), s.arr)
     a = ndarray(shape, dtype=ret_type, af_array=s)
     ret = a[..., 1::2]
     ret._base = a
     ret._base_index = (Ellipsis, slice(1, None, 2))
     return ret
Example #19
0
    def to_arrayfire(self):
        """ Creates an Arrayfire array from this KHIVA array. This need to be used carefully as the same array
        reference is oging to be used by both of them. Once the Arrayfire array is created, the destructor of
        the KHIVA array is not going to free the allocated array.

        :return: an Arrayfire Array
        """
        try:
            import arrayfire as af
        except ModuleNotFoundError:
            logging.error(
                "In order to use `to_arrayfire()` function, you need to install the Arrayfire Python library"
            )
            sys.exit(1)
        result = af.Array()
        result.arr = self.arr_reference
        self.arrayfire_reference = True
        return result
Example #20
0
def af_gauss_sigmas_sep(data,sigmas):
  d_kernels = []
  for s in sigmas:
    csize = ct.c_int(int(3*s + 0.5)*2+1)
    csigma = ct.c_double(s)
    d_k = af.Array()
    af.safe_call(af.backend.get().af_gaussian_kernel(ct.pointer(d_k.arr),csize,1,csigma,ct.c_double(0.0)))
    d_kernels.append(d_k)
  
  out = []
  for d in data:
    d_img = af.np_to_af_array(d)

    for d_k,i in zip(d_kernels,range(len(d_kernels))):
      res = af.convolve2_separable(d_k, af.transpose(d_k), d_img)
      # create numpy array
      out.append(res.__array__())
  return out
Example #21
0
def simple_device(verbose=False):
    display_func = _util.display_func(verbose)
    print_func = _util.print_func(verbose)
    print_func(af.device_info())
    print_func(af.get_device_count())
    print_func(af.is_dbl_supported())
    af.sync()

    curr_dev = af.get_device()
    print_func(curr_dev)
    for k in range(af.get_device_count()):
        af.set_device(k)
        dev = af.get_device()
        assert (k == dev)

        print_func(af.is_dbl_supported(k))

        af.device_gc()

        mem_info_old = af.device_mem_info()

        a = af.randu(100, 100)
        af.sync(dev)
        mem_info = af.device_mem_info()
        assert (mem_info['alloc']['buffers'] == 1 +
                mem_info_old['alloc']['buffers'])
        assert (mem_info['lock']['buffers'] == 1 +
                mem_info_old['lock']['buffers'])

    af.set_device(curr_dev)

    a = af.randu(10, 10)
    display_func(a)
    dev_ptr = af.get_device_ptr(a)
    print_func(dev_ptr)
    b = af.Array(src=dev_ptr, dims=a.dims(), dtype=a.dtype(), is_device=True)
    display_func(b)
    af.lock_device_ptr(b)
    af.unlock_device_ptr(b)
Example #22
0
def array(object: tp.Union[tp.Sequence,
                           np.ndarray,
                           pyarray.array],
          dtype: tp.Optional[np.generic] = None,
          copy: bool = True,
          order: tp.Optional = None,
          subok: bool = False,
          ndmin: int = 0) \
        -> ndarray:
    """
    Create an array.
    """

    if order:
        raise ValueError('order != None is not supported')

    # if dtype is not None:
    #     raise ValueError("parameter dtype != None is not supported")

    af_array = None
    shape = None
    if isinstance(object, np.ndarray):
        if object.ndim == 0:
            # object = [np.asscalar(object)]
            object = np.reshape(object, (1, ))
        af_array = af.to_array(object)
        shape = object.shape
    elif isinstance(object, list):
        np_array = np.array(object, dtype=dtype)
        af_array = af.to_array(np_array)
        shape = np_array.shape
    else:
        af_array = af.Array(object)

    result = ndarray(af_array, shape)
    if dtype is not None and result.dtype != dtype:
        result = result.astype(dtype)
    return result
Example #23
0
def master_node(nn, data, labels):
    nabla_w = []
    nabla_b = []

    l = 1

    for i in range(len(data[0])):
        for n in range(len(nn)):

            r = forward(nn[n], data[n][i])

            tmp = []
            tmp.append(labels[n][i][0])

            delta = d_cost(r, af.Array(tmp))

            w, b = gradient(nn[n], delta)
            nabla_w += w
            nabla_b += b
        nabla_w = [x / len(nn) for x in nabla_w]
        nabla_b = [x / len(nn) for x in nabla_b]
        for net in nn:
            backprop(net, nabla_w, nabla_b)
Example #24
0
def simple_index(verbose=False):
    display_func = _util.display_func(verbose)
    a = af.randu(5, 5)
    display_func(a)
    b = af.Array(a)
    display_func(b)

    c = a.copy()
    display_func(c)
    display_func(a[0, 0])
    display_func(a[0])
    display_func(a[:])
    display_func(a[:, :])
    display_func(a[0:3, ])
    display_func(a[-2:-1, -1])
    display_func(a[0:5])
    display_func(a[0:5:2])

    idx = af.Array(host.array("i", [0, 3, 2]))
    display_func(idx)
    aa = a[idx]
    display_func(aa)

    a[0] = 1
    display_func(a)
    a[0] = af.randu(1, 5)
    display_func(a)
    a[:] = af.randu(5, 5)
    display_func(a)
    a[:, -1] = af.randu(5, 1)
    display_func(a)
    a[0:5:2] = af.randu(3, 5)
    display_func(a)
    a[idx, idx] = af.randu(3, 3)
    display_func(a)

    a = af.randu(5, 1)
    b = af.randu(5, 1)
    display_func(a)
    display_func(b)
    for ii in ParallelRange(1, 3):
        a[ii] = b[ii]

    display_func(a)

    for ii in ParallelRange(2, 5):
        b[ii] = 2
    display_func(b)

    a = af.randu(3, 2)
    rows = af.constant(0, 1, dtype=af.Dtype.s32)
    b = a[:, rows]
    display_func(b)
    for r in range(rows.elements()):
        display_func(r)
        display_func(b[:, r])

    a = af.randu(3)
    c = af.randu(3)
    b = af.constant(1, 3, dtype=af.Dtype.b8)
    display_func(a)
    a[b] = c
    display_func(a)
Example #25
0
solver_method_in_p = 'FVM'

reconstruction_method_in_q = 'weno5'
reconstruction_method_in_p = 'weno5'

riemann_solver_in_q = 'upwind-flux'
riemann_solver_in_p = 'upwind-flux'

# Dimensionality considered in velocity space:
p_dim = 1

# Number of devices(GPUs/Accelerators) on each node:
num_devices = 1

# Constants:
mass               = af.Array([1, 100], (1, 2))
boltzmann_constant = 1
charge             = af.Array([-1, 1], (1, 2))

# Initial Conditions used in initialize:
rho_background_e = 1
rho_background_i = 1

temperature_background_e = 2.5
temperature_background_i = 1

# Parameter controlling amplitude of perturbation introduced:
alpha = 0.01

# Time parameters:
N_cfl   = 0.1
Example #26
0
def mode1_fdtd(Ez, Bx, By, length_domain_x, length_domain_y, ghost_cells, Jx,
               Jy, Jz, dt):

    forward_row = af.Array([1, -1, 0])
    forward_column = af.Array([1, -1, 0])
    backward_row = af.Array([0, 1, -1])
    backward_column = af.Array([0, 1, -1])
    identity = af.Array([0, 1, 0])
    """ Number of grid points in the field's domain"""

    (x_number_of_points, y_number_of_points) = Ez.dims()
    """ number of grid zones from the input fields """

    Nx = x_number_of_points - 2 * ghost_cells - 1
    Ny = y_number_of_points - 2 * ghost_cells - 1
    """ local variables for storing the input fields """

    Ez_local = Ez.copy()
    Bx_local = Bx.copy()
    By_local = By.copy()
    """Enforcing BC's"""

    Ez_local = periodic_ghost(Ez_local, ghost_cells)

    Bx_local = periodic_ghost(Bx_local, ghost_cells)

    By_local = periodic_ghost(By_local, ghost_cells)
    """ Setting division size and time steps"""

    dx = np.float(length_domain_x / (Nx))
    dy = np.float(length_domain_y / (Ny))
    """ defining variables for convenience """

    dt_by_dx = dt / (dx)
    dt_by_dy = dt / (dy)
    """  Updating the Electric field using the current too """

    Ez_local +=   dt_by_dx * (af.signal.convolve2_separable(identity, backward_column, By_local)) \
              - dt_by_dy * (af.signal.convolve2_separable(backward_row, identity, Bx_local)) \
              - dt*(Jz)

    # dEz/dt = dBy/dx - dBx/dy
    """  Implementing periodic boundary conditions using ghost cells  """

    Ez_local = periodic_ghost(Ez_local, ghost_cells)
    """  Updating the Magnetic fields   """

    Bx_local += -dt_by_dy * (af.signal.convolve2_separable(
        forward_row, identity, Ez_local))

    # dBx/dt = -dEz/dy

    By_local += dt_by_dx * (af.signal.convolve2_separable(
        identity, forward_column, Ez_local))

    # dBy/dt = +dEz/dx
    """  Implementing periodic boundary conditions using ghost cells  """

    Bx_local = periodic_ghost(Bx_local, ghost_cells)

    By_local = periodic_ghost(By_local, ghost_cells)

    af.eval(Ez_local, Bx_local, By_local)

    return Ez_local, Bx_local, By_local
Example #27
0
def mode2_fdtd(
    Bz,
    Ex,
    Ey,
    length_domain_x,
    length_domain_y,
    ghost_cells,
    Jx,
    Jy,
    Jz,
    dt,
):

    forward_row = af.Array([1, -1, 0])
    forward_column = af.Array([1, -1, 0])
    backward_row = af.Array([0, 1, -1])
    backward_column = af.Array([0, 1, -1])
    identity = af.Array([0, 1, 0])
    """ Number of grid points in the field's domain """

    (x_number_of_points, y_number_of_points) = Bz.dims()
    """ number of grid zones calculated from the input fields """

    Nx = x_number_of_points - 2 * ghost_cells - 1
    Ny = y_number_of_points - 2 * ghost_cells - 1
    """ local variables for storing the input fields """

    Bz_local = Bz.copy()
    Ex_local = Ex.copy()
    Ey_local = Ey.copy()
    """Enforcing periodic BC's"""

    Bz_local = periodic_ghost(Bz_local, ghost_cells)

    Ex_local = periodic_ghost(Ex_local, ghost_cells)

    Ey_local = periodic_ghost(Ey_local, ghost_cells)
    """ Setting division size and time steps"""

    dx = np.float(length_domain_x / (Nx))
    dy = np.float(length_domain_y / (Ny))
    """ defining variable for convenience """

    dt_by_dx = dt / (dx)
    dt_by_dy = dt / (dy)
    """  Updating the Electric fields using the current too   """

    Ex_local += dt_by_dy * (af.signal.convolve2_separable(
        backward_row, identity, Bz_local)) - (Jx) * dt

    # dEx/dt = + dBz/dy

    Ey_local += -dt_by_dx * (af.signal.convolve2_separable(
        identity, backward_column, Bz_local)) - (Jy) * dt

    # dEy/dt = - dBz/dx
    """  Implementing periodic boundary conditions using ghost cells  """

    Ex_local = periodic_ghost(Ex_local, ghost_cells)

    Ey_local = periodic_ghost(Ey_local, ghost_cells)
    """  Updating the Magnetic field  """

    Bz_local += - dt_by_dx * (af.signal.convolve2_separable(identity, forward_column, Ey_local)) \
              + dt_by_dy * (af.signal.convolve2_separable(forward_row, identity, Ex_local))

    # dBz/dt = - ( dEy/dx - dEx/dy )

    #Implementing periodic boundary conditions using ghost cells

    Bz_local = periodic_ghost(Bz_local, ghost_cells)

    af.eval(Bz_local, Ex_local, Ey_local)

    return Bz_local, Ex_local, Ey_local
Example #28
0
 def testArrayfire(self):
     a = af.Array([1, 2, 3, 4])
     a_data = a.to_list()
     b = Array.from_arrayfire(a)
     np.testing.assert_array_equal(np.asarray(a_data), np.asarray(b.to_list()))
Example #29
0
def af_gaussian2D(s):
  csize = ct.c_int(int(3*s)*2+1)
  csigma = ct.c_double(s)
  d_k = af.Array()
  af.safe_call(af.backend.get().af_gaussian_kernel(ct.pointer(d_k.arr),csize,csize,csigma,csigma))
  return d_k
Example #30
0
af.set_backend('cuda')
v = af.random.randu(size_of_vector)
time_sort_device = af.timer.timeit(af.algorithm.sort, v)
print('Device time: {}'.format(time_sort_device))
print('Speedup: {0:.2f}x'.format(time_sort_host / time_sort_device))

# Test de convolution
n = 1000
print('')
print('=== 2d convolution on a {}x{} matrix ==='.format(n, n))

af.set_backend('cpu')
m = af.random.randu(n, n)

numpy_kernel = np.array([[0.1, 0.2, 0.1], [0.2, 0.3, 0.2], [0.1, 0.2, 0.1]])
af_kernel = af.Array(numpy_kernel.ctypes.data, numpy_kernel.shape,
                     numpy_kernel.dtype.char)

time_convolve_host = af.timer.timeit(af.convolve, m, af_kernel)
print('Host time: {}'.format(time_convolve_host))

af.set_backend('cuda')
af_kernel = af.Array(numpy_kernel.ctypes.data, numpy_kernel.shape,
                     numpy_kernel.dtype.char)
m = af.random.randu(n, n)

time_convolve_device = af.timer.timeit(af.convolve, m, af_kernel)
print('Device time: {}'.format(time_convolve_device))
print('Speedup: {0:.2f}x'.format(time_convolve_host / time_convolve_device))

# Interop numpy
print('')