def test_pytorch_mnist(self):
        x_train = np.reshape(self.x_train_mnist,
                             (self.x_train_mnist.shape[0], 1, 28, 28)).astype(
                                 np.float32)
        x_test = np.reshape(self.x_test_mnist,
                            (self.x_test_mnist.shape[0], 1, 28, 28)).astype(
                                np.float32)
        x_test_original = x_test.copy()

        # Create basic PyTorch model
        classifier = get_image_classifier_pt(from_logits=True)

        scores = get_labels_np_array(classifier.predict(x_train))
        sum6 = np.sum(
            np.argmax(scores, axis=1) == np.argmax(self.y_train_mnist, axis=1))
        accuracy = sum6 / self.y_train_mnist.shape[0]
        logger.info("[PyTorch, MNIST] Accuracy on training set: %.2f%%",
                    (accuracy * 100))

        scores = get_labels_np_array(classifier.predict(x_test))
        sum7 = np.sum(
            np.argmax(scores, axis=1) == np.argmax(self.y_test_mnist, axis=1))
        accuracy = sum7 / self.y_test_mnist.shape[0]
        logger.info("[PyTorch, MNIST] Accuracy on test set: %.2f%%",
                    (accuracy * 100))

        attack = DeepFool(classifier, max_iter=5, batch_size=11)
        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        self.assertFalse((x_train == x_train_adv).all())
        self.assertFalse((x_test == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((self.y_train_mnist == train_y_pred).all())
        self.assertFalse((self.y_test_mnist == test_y_pred).all())

        sum8 = np.sum(
            np.argmax(train_y_pred, axis=1) == np.argmax(self.y_train_mnist,
                                                         axis=1))
        accuracy = sum8 / self.y_train_mnist.shape[0]
        logger.info("Accuracy on adversarial train examples: %.2f%%",
                    (accuracy * 100))

        sum9 = np.sum(
            np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test_mnist,
                                                        axis=1))
        accuracy = sum9 / self.y_test_mnist.shape[0]
        logger.info("Accuracy on adversarial test examples: %.2f%%",
                    (accuracy * 100))

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))),
                               0.0,
                               delta=0.00001)
Example #2
0
def atk_DeepFool(x_train, x_test, y_train, y_test, classifier):
    #print('Create DeepFool attack \n')
    adv_crafter = DeepFool(classifier, max_iter=20)
    x_train_adv = adv_crafter.generate(x_train)
    x_test_adv = adv_crafter.generate(x_test)
    
    print("After DeepFool Attack \n")
    evaluate(x_train, x_test, y_train, y_test, x_train_adv, x_test_adv, classifier)
    return x_test_adv, x_train_adv
    def test_tensorflow_mnist(self):
        x_test_original = self.x_test_mnist.copy()

        # Create basic CNN on MNIST using TensorFlow
        classifier, sess = get_image_classifier_tf(from_logits=True)

        scores = get_labels_np_array(classifier.predict(self.x_train_mnist))
        sum2 = np.sum(
            np.argmax(scores, axis=1) == np.argmax(self.y_train_mnist, axis=1))
        accuracy = sum2 / self.y_train_mnist.shape[0]
        logger.info("[TF, MNIST] Accuracy on training set: %.2f%%",
                    (accuracy * 100))

        scores = get_labels_np_array(classifier.predict(self.x_test_mnist))
        sum3 = np.sum(
            np.argmax(scores, axis=1) == np.argmax(self.y_test_mnist, axis=1))
        accuracy = sum3 / self.y_test_mnist.shape[0]
        logger.info("[TF, MNIST] Accuracy on test set: %.2f%%",
                    (accuracy * 100))

        attack = DeepFool(classifier, max_iter=5, batch_size=11)
        x_train_adv = attack.generate(self.x_train_mnist)
        x_test_adv = attack.generate(self.x_test_mnist)

        self.assertFalse((self.x_train_mnist == x_train_adv).all())
        self.assertFalse((self.x_test_mnist == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((self.y_train_mnist == train_y_pred).all())
        self.assertFalse((self.y_test_mnist == test_y_pred).all())

        sum4 = np.sum(
            np.argmax(train_y_pred, axis=1) == np.argmax(self.y_train_mnist,
                                                         axis=1))
        accuracy = sum4 / self.y_train_mnist.shape[0]
        logger.info("Accuracy on adversarial train examples: %.2f%%",
                    (accuracy * 100))

        sum5 = np.sum(
            np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test_mnist,
                                                        axis=1))
        accuracy = sum5 / self.y_test_mnist.shape[0]
        logger.info("Accuracy on adversarial test examples: %.2f%%",
                    (accuracy * 100))

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(
            np.max(np.abs(x_test_original - self.x_test_mnist))),
                               0.0,
                               delta=0.00001)
Example #4
0
    def test_multi_attack_mnist(self):
        """
        Test the adversarial trainer using two attackers: FGSM and DeepFool. The source and target models of the attack
        are two CNNs on MNIST trained for 2 epochs. FGSM and DeepFool both generate the attack images on the same
        source classifier. The test cast check if accuracy on adversarial samples increases
        after adversarially training the model.

        :return: None
        """
        (x_train, y_train), (x_test, y_test) = self.mnist

        # Get source and target classifiers
        classifier_tgt = self.classifier_k
        classifier_src = self.classifier_tf

        # Create FGSM and DeepFool attackers
        adv1 = FastGradientMethod(classifier_src)
        adv2 = DeepFool(classifier_src)
        x_adv = np.vstack((adv1.generate(x_test), adv2.generate(x_test)))
        y_adv = np.vstack((y_test, y_test))
        preds = classifier_tgt.predict(x_adv)
        acc = np.sum(np.argmax(preds, axis=1) == np.argmax(y_adv, axis=1)) / y_adv.shape[0]

        # Perform adversarial training
        adv_trainer = StaticAdversarialTrainer(classifier_tgt, [adv1, adv2])
        params = {'nb_epochs': 2, 'batch_size': BATCH_SIZE}
        adv_trainer.fit(x_train, y_train, **params)

        # Evaluate that accuracy on adversarial sample has improved
        preds_adv_trained = adv_trainer.classifier.predict(x_adv)
        acc_adv_trained = np.sum(np.argmax(preds_adv_trained, axis=1) == np.argmax(y_adv, axis=1)) / y_adv.shape[0]
        logger.info('Accuracy before adversarial training: %.2f%%', (acc * 100))
        logger.info('Accuracy after adversarial training: %.2f%%', (acc_adv_trained * 100))
    def test_keras_mnist(self):
        x_test_original = self.x_test_mnist.copy()

        # Keras classifier
        classifier = get_image_classifier_kr(from_logits=True)

        scores = classifier._model.evaluate(self.x_train_mnist,
                                            self.y_train_mnist)
        logger.info("[Keras, MNIST] Accuracy on training set: %.2f%%",
                    (scores[1] * 100))
        scores = classifier._model.evaluate(self.x_test_mnist,
                                            self.y_test_mnist)
        logger.info("[Keras, MNIST] Accuracy on test set: %.2f%%",
                    (scores[1] * 100))

        attack = DeepFool(classifier, max_iter=5, batch_size=11)
        x_train_adv = attack.generate(self.x_train_mnist)
        x_test_adv = attack.generate(self.x_test_mnist)

        self.assertFalse((self.x_train_mnist == x_train_adv).all())
        self.assertFalse((self.x_test_mnist == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((self.y_train_mnist == train_y_pred).all())
        self.assertFalse((self.y_test_mnist == test_y_pred).all())

        sum = np.sum(
            np.argmax(train_y_pred, axis=1) == np.argmax(self.y_train_mnist,
                                                         axis=1))
        accuracy = sum / self.y_train_mnist.shape[0]
        logger.info("Accuracy on adversarial train examples: %.2f%%",
                    (accuracy * 100))

        sum1 = np.sum(
            np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test_mnist,
                                                        axis=1))
        accuracy = sum1 / self.y_test_mnist.shape[0]
        logger.info("Accuracy on adversarial test examples: %.2f%%",
                    (accuracy * 100))

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(
            np.max(np.abs(x_test_original - self.x_test_mnist))),
                               0.0,
                               delta=0.00001)
    def test_multi_attack_mnist_with_generator(self):
        """
        Test the adversarial trainer using two attackers: FGSM and DeepFool. The source and target models of the attack
        are two CNNs on MNIST trained for 2 epochs. FGSM and DeepFool both generate the attack images on the same
        source classifier. The test cast check if accuracy on adversarial samples increases
        after adversarially training the model. Here a generator is used to yield the data for adversarial training

        :return: None
        """
        (x_train, y_train), (x_test, y_test) = self.mnist
        x_train_original = x_train.copy()

        class MyDataGenerator(DataGenerator):
            def __init__(self, x, y, size, batch_size):
                self.x = x
                self.y = y
                self.size = size
                self.batch_size = batch_size

            def get_batch(self):
                ids = np.random.choice(self.size,
                                       size=min(self.size, self.batch_size),
                                       replace=False)
                return (self.x[ids], self.y[ids])

        generator = MyDataGenerator(x_train, y_train, x_train.shape[0],
                                    BATCH_SIZE)

        # Get source and target classifiers
        classifier_tgt = self.classifier_k
        classifier_src = self.classifier_tf

        # Create FGSM and DeepFool attackers
        adv1 = FastGradientMethod(classifier_src)
        adv2 = DeepFool(classifier_src)
        x_adv = np.vstack((adv1.generate(x_test), adv2.generate(x_test)))
        y_adv = np.vstack((y_test, y_test))
        preds = classifier_tgt.predict(x_adv)
        acc = np.sum(np.argmax(preds, axis=1) == np.argmax(
            y_adv, axis=1)) / y_adv.shape[0]

        # Perform adversarial training
        adv_trainer = StaticAdversarialTrainer(classifier_tgt, [adv1, adv2])
        params = {'nb_epochs': 2}
        adv_trainer.fit_generator(generator, **params)

        # Evaluate that accuracy on adversarial sample has improved
        preds_adv_trained = adv_trainer.classifier.predict(x_adv)
        acc_adv_trained = np.sum(
            np.argmax(preds_adv_trained, axis=1) == np.argmax(
                y_adv, axis=1)) / y_adv.shape[0]
        logger.info('Accuracy before adversarial training: %.2f%%',
                    (acc * 100))
        logger.info('Accuracy after adversarial training: %.2f%%',
                    (acc_adv_trained * 100))

        # Finally assert that the original training data hasn't changed:
        self.assertTrue((x_train == x_train_original).all())
def general_test(model,
                 optimizer,
                 input_shape,
                 nb_classes,
                 test_loader,
                 method,
                 btrain=False,
                 model_file='last_model_92_sgd.pkl'):
    global _classes
    if not btrain:
        model.load_state_dict(torch.load(model_file))
    model.eval()

    loss = nn.CrossEntropyLoss()
    warped_model = PyTorchClassifier(model,
                                     loss,
                                     optimizer,
                                     input_shape,
                                     nb_classes,
                                     clip_values=(.0, 1.))
    if method == 'Deepfool':
        adv_crafter = DeepFool(warped_model)
    elif method == 'BIM':
        adv_crafter = BasicIterativeMethod(warped_model, batch_size=20)
    elif method == 'JSMA':
        adv_crafter = SaliencyMapMethod(warped_model, batch_size=20)
    elif method == 'CW2':
        adv_crafter = CarliniL2Method(warped_model, batch_size=20)
    elif method == 'CWI':
        adv_crafter = CarliniLInfMethod(warped_model, batch_size=20)

    correct, total = 0, 0
    class_correct = list(0. for _ in range(10))
    class_total = list(0. for _ in range(10))

    for images, labels in test_loader:
        images = adv_crafter.generate(images.numpy())

        images = Variable(torch.from_numpy(images).cuda())
        labels = Variable(labels.cuda())

        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels.data).sum()
        c = (predicted == labels.data).squeeze()
        for i in range(20):
            label = labels.data[i]
            class_correct[label] += c[i]
            class_total[label] += 1

    print('Accuracy of the model on the test images: %d %%' %
          (100 * float(correct) / total))
    print('Accuracy of the model on the test images:', float(correct) / total)
    for i in range(10):
        print('Accuracy of %5s : %2d %%' %
              (_classes[i], 100 * class_correct[i] / class_total[i]))
    return correct / total
Example #8
0
def deep_fool(x_test, model, max_iter, epsilon, nb_grads, batch_size):
    classifier = KerasClassifier(model=model, clip_values=(0, 1))
    attack_cw = DeepFool(classifier=classifier,
                         max_iter=max_iter,
                         epsilon=epsilon,
                         nb_grads=nb_grads,
                         batch_size=batch_size)
    x_test_adv = attack_cw.generate(x_test)
    return np.reshape(x_test_adv, (32, 32, 3))
Example #9
0
    def test_partial_grads(self):
        attack = DeepFool(self.classifier_k, max_iter=2, nb_grads=3)
        x_test_adv = attack.generate(self.x_test)
        self.assertFalse((self.x_test == x_test_adv).all())

        test_y_pred = get_labels_np_array(self.classifier_k.predict(x_test_adv))
        self.assertFalse((self.y_test == test_y_pred).all())

        accuracy = np.sum(np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test, axis=1)) / self.y_test.shape[0]
        logger.info('Accuracy on adversarial test examples: %.2f%%', (accuracy * 100))
Example #10
0
    def _test_backend_mnist(self, classifier):
        attack = DeepFool(classifier, max_iter=5, batch_size=11)
        x_train_adv = attack.generate(self.x_train)
        x_test_adv = attack.generate(self.x_test)

        self.assertFalse((self.x_train == x_train_adv).all())
        self.assertFalse((self.x_test == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((self.y_train == train_y_pred).all())
        self.assertFalse((self.y_test == test_y_pred).all())

        accuracy = np.sum(np.argmax(train_y_pred, axis=1) == np.argmax(self.y_train, axis=1)) / self.y_train.shape[0]
        logger.info('Accuracy on adversarial train examples: %.2f%%', (accuracy * 100))

        accuracy = np.sum(np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test, axis=1)) / self.y_test.shape[0]
        logger.info('Accuracy on adversarial test examples: %.2f%%', (accuracy * 100))
Example #11
0
    def test_iris_k_unbounded(self):
        classifier, _ = get_iris_classifier_kr()

        # Recreate a classifier without clip values
        classifier = KerasClassifier(model=classifier._model, use_logits=False, channel_index=1)
        attack = DeepFool(classifier, max_iter=5, batch_size=128)
        x_test_adv = attack.generate(self.x_test)
        self.assertFalse((self.x_test == x_test_adv).all())

        predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1)
        self.assertFalse((np.argmax(self.y_test, axis=1) == predictions_adv).all())
        accuracy = np.sum(predictions_adv == np.argmax(self.y_test, axis=1)) / self.y_test.shape[0]
        logger.info('Accuracy on Iris with DeepFool adversarial examples: %.2f%%', (accuracy * 100))
Example #12
0
    def test_iris_pt(self):
        classifier = get_iris_classifier_pt()

        attack = DeepFool(classifier, max_iter=5, batch_size=128)
        x_test_adv = attack.generate(self.x_test)
        self.assertFalse((self.x_test == x_test_adv).all())
        self.assertLessEqual(np.amax(x_test_adv), 1.0)
        self.assertGreaterEqual(np.amin(x_test_adv), 0.0)

        predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1)
        self.assertFalse((np.argmax(self.y_test, axis=1) == predictions_adv).all())
        accuracy = np.sum(predictions_adv == np.argmax(self.y_test, axis=1)) / self.y_test.shape[0]
        logger.info('Accuracy on Iris with DeepFool adversarial examples: %.2f%%', (accuracy * 100))
    def test_kera_mnist_partial_grads(self):
        classifier = get_image_classifier_kr(from_logits=True)
        attack = DeepFool(classifier, max_iter=2, nb_grads=3)
        x_test_adv = attack.generate(self.x_test_mnist)
        self.assertFalse((self.x_test_mnist == x_test_adv).all())

        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))
        self.assertFalse((self.y_test_mnist == test_y_pred).all())
        sum10 = np.sum(
            np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test_mnist,
                                                        axis=1))
        accuracy = sum10 / self.y_test_mnist.shape[0]
        logger.info("Accuracy on adversarial test examples: %.2f%%",
                    (accuracy * 100))
Example #14
0
    def test_transfer(self):
        (x_train, y_train), (x_test, y_test) = self.mnist

        attack = DeepFool(self.classifier_tf)
        x_test_adv = attack.generate(x_test)
        preds = np.argmax(self.classifier_k.predict(x_test_adv), axis=1)
        acc = np.sum(preds == np.argmax(y_test, axis=1)) / NB_TEST

        adv_trainer = AdversarialTrainer(self.classifier_k, attack)
        adv_trainer.fit(x_train, y_train, nb_epochs=2, batch_size=6)

        preds_new = np.argmax(adv_trainer.predict(x_test_adv), axis=1)
        acc_new = np.sum(preds_new == np.argmax(y_test, axis=1)) / NB_TEST
        self.assertGreaterEqual(acc_new, acc * ACCURACY_DROP)

        logger.info('Accuracy before adversarial training: %.2f%%', (acc * 100))
        logger.info('Accuracy after adversarial training: %.2f%%', (acc_new * 100))
    def test_keras_iris_clipped(self):
        (_, _), (x_test, y_test) = self.iris
        classifier = get_iris_classifier_kr()

        attack = DeepFool(classifier, max_iter=5)
        x_test_adv = attack.generate(x_test)
        self.assertFalse((x_test == x_test_adv).all())
        self.assertLessEqual(np.amax(x_test_adv), 1.0)
        self.assertGreaterEqual(np.amin(x_test_adv), 0.0)

        predictions_adv = np.argmax(classifier.predict(x_test_adv), axis=1)
        self.assertFalse((np.argmax(y_test, axis=1) == predictions_adv).all())
        accuracy = np.sum(
            predictions_adv == np.argmax(y_test, axis=1)) / y_test.shape[0]
        logger.info(
            'Accuracy on Iris with DeepFool adversarial examples: %.2f%%',
            (accuracy * 100))
Example #16
0
class DeepFoolAttack(AdversarialAttack):
    def __init__(self,
                 model,
                 overshoot=1e-6,
                 max_iterations=100,
                 n_candidates=10,
                 batch_size=16):
        super().__init__(model=model)
        self._overshoot = overshoot
        self._max_iterations = max_iterations
        self._n_candidates = n_candidates
        self._method = DeepFool(classifier=self.model,
                                epsilon=self._overshoot,
                                max_iter=self._max_iterations,
                                nb_grads=self._n_candidates,
                                batch_size=batch_size)

    def attack_method(self, x, y=None):
        return self._method.generate(x=x)
Example #17
0
    def test_transfer(self):
        (x_train, y_train), (x_test, y_test) = self.mnist
        x_test_original = x_test.copy()

        attack = DeepFool(self.classifier_tf)
        x_test_adv = attack.generate(x_test)
        preds = np.argmax(self.classifier_k.predict(x_test_adv), axis=1)
        acc = np.sum(preds == np.argmax(y_test, axis=1)) / NB_TEST

        adv_trainer = AdversarialTrainer(self.classifier_k, attack)
        adv_trainer.fit(x_train, y_train, nb_epochs=2, batch_size=6)

        preds_new = np.argmax(adv_trainer.predict(x_test_adv), axis=1)
        acc_new = np.sum(preds_new == np.argmax(y_test, axis=1)) / NB_TEST
        self.assertGreaterEqual(acc_new, acc * ACCURACY_DROP)

        logger.info('Accuracy before adversarial training: %.2f%%', (acc * 100))
        logger.info('Accuracy after adversarial training: %.2f%%', (acc_new * 100))

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
Example #18
0
        # FGSM
        attack = FastGradientMethod(classifier=classifier,
                                    eps=epsilon,
                                    eps_step=epsilon / 10)
        x_test_adv = attack.generate(x=x_test / 255.0)

        predictions = classifier.predict(x_test_adv * 255.0)
        accuracy = np.sum(
            np.argmax(predictions, axis=1) == y_test) / len(y_test)
        print('Accuracy on adversarial test examples: {}%'.format(accuracy *
                                                                  100))

        adv_crafter_deepfool = DeepFool(classifier,
                                        batch_size=batch_size,
                                        epsilon=epsilon)
        x_test_adv = adv_crafter_deepfool.generate(x=x_test / 255.0)
        predictions = classifier.predict(x_test_adv * 255.0)
        print(np.argmax(predictions, axis=1))
        accuracy = np.sum(
            np.argmax(predictions, axis=1) == y_test) / len(y_test)
        print('Accuracy on adversarial test examples: {}%'.format(accuracy *
                                                                  100))
        # pgd 20
        adv_crafter_pgd_20 = ProjectedGradientDescent(classifier,
                                                      eps=epsilon,
                                                      eps_step=0.00775,
                                                      max_iter=20,
                                                      batch_size=batch_size)
        x_test_adv = adv_crafter_pgd_20.generate(x=x_test / 255.0)
        # print(x_test_adv)
        predictions = classifier.predict(x_test_adv * 255.0)
def deepfool(clf, x_train, x_test):
    from art.attacks import DeepFool
    deep_adv_crafter = DeepFool(clf)
    x_train_deepfool_adv = deep_adv_crafter.generate(x_train)
    x_test_deepfool_adv = deep_adv_crafter.generate(x_test)
    return x_train_deepfool_adv, x_test_deepfool_adv
def Deep_Fool(victims):
    adv_crafter = DeepFool(model)
    finalVictims = adv_crafter.generate(x=victims)
    return finalVictims
Example #21
0
model.add(Dense(10))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

# Create classifier wrapper
classifier = KerasClassifier(model=model, clip_values=(min_, max_))
classifier.fit(x_train, y_train, nb_epochs=10, batch_size=128)

# Craft adversarial samples with DeepFool
logger.info('Create DeepFool attack')
adv_crafter = DeepFool(classifier)
logger.info('Craft attack on training examples')
x_train_adv = adv_crafter.generate(x_train)
logger.info('Craft attack test examples')
x_test_adv = adv_crafter.generate(x_test)

# Evaluate the classifier on the adversarial samples
preds = np.argmax(classifier.predict(x_test_adv), axis=1)
acc = np.sum(preds == np.argmax(y_test, axis=1)) / y_test.shape[0]
logger.info('Classifier before adversarial training')
logger.info('Accuracy on adversarial samples: %.2f%%', (acc * 100))

# Data augmentation: expand the training set with the adversarial samples
x_train = np.append(x_train, x_train_adv, axis=0)
y_train = np.append(y_train, y_train, axis=0)

# Retrain the CNN on the extended dataset
model.compile(loss='categorical_crossentropy',
# 创建分类器包装器classifier wrapper
classifier = KerasClassifier(model=model, clip_values=(min_, max_))
classifier.fit(x_train, y_train, nb_epochs=10, batch_size=128)
# classifier._output = 0
# classifier.input_shape = (32,32,3)
# epoch:1个epoch等于使用训练集中的全部样本训练一次
# batchsize:批大小,一般采用SGD训练,每次训练在训练集中取batchsize个样本训练
# iteration:1个iteration等于使用batchsize个样本训练一次
# 训练集有1000个样本,batchsize=10,那么训练完整个样本集需要:100次iteration,1次epoch

# 用DeepFool制作对抗性样本
logger.info('Create DeepFool attack')
adv_crafter = DeepFool(classifier)  # 针对classifier训练一个对抗性的classifier
logger.info('Craft attack on training examples')
x_train_adv = adv_crafter.generate(x_train)  # 用对抗性的classifier去训练image--对抗性示例
logger.info('Craft attack on testing examples')
x_test_adv = adv_crafter.generate(x_test)

# 在对抗性样本上评价分类器
preds = np.argmax(classifier.predict(x_test_adv), axis=1)
acc = np.sum(preds == np.argmax(y_test, axis=1)) / y_test.shape[0]
logger.info('---Before adversarial training---')
logger.info('Classifier before adversarial training')
logger.info('Accuracy on adversarial samples: %.2f%%', (acc * 100))

# 数据扩充:用对抗性样本展开训练集
x_train = np.append(x_train, x_train_adv, axis=0)  # 5000+5000=10000
# axis = 0 代表对横轴操作 axis = 1 代表对纵轴操作
y_train = np.append(y_train, y_train, axis=0)  # 5000+5000=10000