def makePlots(ratios_J100,ratios_J75,J100inputfileform,J75inputfileform,makeCombinedPlot = False): (dataset, luminosity, cutstring) = ("J100yStar06", 29.3*1000, "|y*| < 0.6" ) if len(ratios_J100) == 1: cutstring += " " + names['%1.2f'%(ratios_J100[0])] J100_plots = getGaussianLimits( J100inputfileform, ratios_J100, dataset, luminosity, cutstring, makePlot = not makeCombinedPlot) (dataset, luminosity, cutstring) = ("J75yStar03", 3.57*1000, "|y*| < 0.3") if len(ratios_J100) == 1: cutstring += " " + names['%1.2f'%(ratios_J75[0])] J75_plots = getGaussianLimits( J75inputfileform, ratios_J75, dataset, luminosity, cutstring, makePlot = not makeCombinedPlot) if makeCombinedPlot: allobserved = [] allexpected = [] allexpected1Sigma = [] allexpected2Sigma = [] all_ratios = list(set().union(ratios_J100,ratios_J75)) all_ratios.sort() for r in all_ratios: SR_dicts = [J100_plots,J75_plots] allobserved.append([d[r]['obs'] if r in d else None for d in SR_dicts]) allexpected.append([d[r]['exp'] if r in d else None for d in SR_dicts]) allexpected1Sigma.append([d[r]['exp1'] if r in d else None for d in SR_dicts if r == 0]) allexpected2Sigma.append([d[r]['exp2'] if r in d else None for d in SR_dicts if r == 0]) # Initialize painter myPainter = Morisot() # Internal if len(ratios_J100) > 1 or len(ratios_J75) > 1: myPainter.setColourPalette("Tropical") else: myPainter.setColourPalette("ATLAS") myPainter.setLabelType(2) myPainter.cutstring = '#scale[0.9]{|y*| < 0.3, m_{jj} < 700 GeV};#scale[0.9]{|y*| < 0.6, m_{jj} > 700 GeV}' outfolder = "./plots/" outname = outfolder+"GenericGaussians_Combined" if len(ratios_J100) == 1 and len(ratios_J75) == 1 and ratios_J100[0] == ratios_J75[0]: outname += "_" + str(int(ratios_J75[0]*100)) myPainter.cutstring += ";"+names['%1.2f'%(ratios_J75[0])].replace('Res.','detector resolution') myPainter.drawSeveralObservedExpectedLimits(allobserved,allexpected,allexpected1Sigma,allexpected2Sigma,\ [names['%1.2f'%r] for r in all_ratios],outname,"m_{G} [GeV]",\ "#sigma #times #it{A} #times BR [pb]",[3.57*1000,29.3*1000],13,400,1850,2E-2,300,[],\ ATLASLabelLocation="BottomL",cutLocation="Left",doLegendLocation="Left" if len(ratios_J100) == 1 else "Center")
def main(): # User controlled arguments parser = argparse.ArgumentParser() parser.add_argument("--inFileName", type=str, default="", help="The path to the input file from runBumpHunter") parser.add_argument( "--outPath", type=str, default="", help="The path prefix (directory) where you want the output plots") parser.add_argument("--lumi", type=float, default=1, help="Luminosity") parser.add_argument("--overlaidSignal", action='store_true', help="Overlaid Signal on Background") parser.add_argument("--signalFileName", type=str, default="", help="Signal histogram overlaid on background") parser.add_argument("--drawMCComparison", action='store_true', help="Draw the comparison between data and MC") parser.add_argument("--mcFileName", type=str, default="", help="MC File Name") args = parser.parse_args() inFileName = args.inFileName outPath = args.outPath luminosity = args.lumi * 1000 overlaidSignal = args.overlaidSignal signalFileName = args.signalFileName drawMCComparison = args.drawMCComparison mcFileName = args.mcFileName print "===================================" print "inputFile : ", inFileName print "outPath : ", outPath print "Luminosity : ", args.lumi print "OverlaidSignal : ", overlaidSignal print "Signal File : ", signalFileName print "drawMCComparison: ", drawMCComparison print "mcFileName: ", mcFileName print "===================================" # Get input root file inFile = ROOT.TFile.Open(inFileName, "READ") if not inFile: print inFileName, " doesn't exist." return # make plots folder i.e. make folder extension if not os.path.exists(outPath): os.makedirs(outPath) # Define necessary quantities. Ecm = 13 # Initialize painter myPainter = Morisot() myPainter.setColourPalette("Teals") #myPainter.setEPS(True) myPainter.setLabelType( 1) # Sets label type i.e. Internal, Work in progress etc. # 0 Just ATLAS # 1 "Preliminary" # 2 "Internal" # 3 "Simulation Preliminary" # 4 "Simulation Internal" # 5 "Simulation" # 6 "Work in Progress" # Retrieve search phase inputs basicData = inFile.Get("basicData") basicBkg = inFile.Get("basicBkg") residualHist = inFile.Get("residualHist") logLikelihoodPseudoStatHist = inFile.Get("logLikelihoodStatHistNullCase") chi2PseudoStatHist = inFile.Get("chi2StatHistNullCase") bumpHunterStatHist = inFile.Get("bumpHunterStatHistNullCase") bumpHunterTomographyPlot = inFile.Get( 'bumpHunterTomographyFromPseudoexperiments') bumpHunterStatOfFitToData = inFile.Get('bumpHunterStatOfFitToData') logLOfFitToDataVec = inFile.Get('logLOfFitToData') chi2OfFitToDataVec = inFile.Get('chi2OfFitToData') statOfFitToData = inFile.Get('bumpHunterPLowHigh') logLOfFitToData = logLOfFitToDataVec[0] logLPVal = logLOfFitToDataVec[1] chi2OfFitToData = chi2OfFitToDataVec[0] chi2PVal = chi2OfFitToDataVec[1] bumpHunterStatFitToData = statOfFitToData[0] bumpHunterPVal = bumpHunterStatOfFitToData[1] bumpLowEdge = statOfFitToData[1] bumpHighEdge = statOfFitToData[2] print "logL of fit to data is", logLOfFitToData print "logL pvalue is", logLPVal print "chi2 of fit to data is", chi2OfFitToData print "chi2 pvalue is", chi2PVal print "bump hunter stat of fit to data is", bumpHunterStatFitToData print "bumpLowEdge, bumpHighEdge are", bumpLowEdge, bumpHighEdge print "BumpHunter pvalue is", bumpHunterPVal print "which is Z value of", GetZVal(bumpHunterPVal, True) # Find range # Calculate from fit range fitRange = inFile.Get("FitRange") firstBin = basicData.FindBin(fitRange[0]) - 1 lastBin = basicData.FindBin(fitRange[1]) print "firstbin, lastbin: ", firstBin, lastBin print "First bin = ", firstBin, ": lower edge at", basicData.GetBinLowEdge( firstBin) print "Last bin = ", lastBin, ": higher edge at", basicData.GetBinLowEdge( lastBin) + basicData.GetBinWidth(lastBin) # Convert plots into desired final form standardbins = basicData.GetXaxis().GetXbins() newbins = [] #ROOT.TArrayD(standardbins.GetSize()) for np in range(standardbins.GetSize()): newbins.append(standardbins[np] / 1000) # Make never versions of old plots newbasicdata = ROOT.TH1D("basicData_TeV", "basicData_TeV", len(newbins) - 1, array('d', newbins)) newbasicBkg = ROOT.TH1D("basicBkg_TeV", "basicBkg_TeV", len(newbins) - 1, array('d', newbins)) newresidualHist = ROOT.TH1D("residualHist_TeV", "residualHist_TeV", len(newbins) - 1, array('d', newbins)) for histnew, histold in [[newbasicdata, basicData], [newbasicBkg, basicBkg], [newresidualHist, residualHist]]: for bin in range(histnew.GetNbinsX() + 2): histnew.SetBinContent(bin, histold.GetBinContent(bin)) histnew.SetBinError(bin, histold.GetBinError(bin)) # Significances for Todd ToddSignificancesHist = ROOT.TH1D("ToddSignificancesHist", "ToddSignificancesHist", 100, -5, 5) for bin in range(0, newresidualHist.GetNbinsX() + 1): if bin < firstBin: continue if bin > lastBin: continue residualValue = newresidualHist.GetBinContent(bin) #print residualValue ToddSignificancesHist.Fill(residualValue) myPainter.drawBasicHistogram(ToddSignificancesHist, -1, -1, "Residuals", "Entries", "{0}/ToddSignificancesHist".format(outPath)) # Search phase plots myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist,\ 'm_{jj} [TeV]','Events','Significance','{0}/figure1'.format(outPath),\ luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,True,\ bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],True,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist,\ 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nobump'.format(outPath),\ luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,\ bumpLowEdge,bumpHighEdge,[],True,False,[],True,bumpHunterPVal) myPainter.drawPseudoExperimentsWithObservedStat(logLikelihoodPseudoStatHist,\ float(logLOfFitToData),logLPVal,0,luminosity,13,\ 'logL statistic','Pseudo-exeperiments',"{0}/logLStatPlot".format(outPath)) myPainter.drawPseudoExperimentsWithObservedStat(chi2PseudoStatHist, float(chi2OfFitToData),chi2PVal,0,luminosity,13,\ "#chi^{2}",'Pseudo-exeperiments',"{0}/chi2StatPlot".format(outPath)) myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatHist, float(bumpHunterStatFitToData),bumpHunterPVal,0,luminosity,13,\ 'BumpHunter','Pseudo-exeperiments',"{0}/bumpHunterStatPlot".format(outPath)) myPainter.drawBumpHunterTomographyPlot( bumpHunterTomographyPlot, "{0}/bumpHunterTomographyPlot".format(outPath)) ####### Draw Signal Template overlaid on Background########### if overlaidSignal: signalFile = ROOT.TFile.Open(signalFileName, "read") if not signalFile: print signalFileName, " doesn't exist!!!!" return # setup signal information signalTitles = {"QStar": "#it{q}*"} signalTypes = ["QStar"] signalsMasses = {"QStar": [4000, 5000]} signalScalingFactors = {"QStar": 0.1} signalAxes = { "QStar": { "X": "M_{#it{q}*} [GeV]", "Y": "#sigma #times #it{A} #times BR [pb]" } } for signalType in signalTypes: print "in signal", signalType signalMasses = signalsMasses[signalType] signalMassesTeV = signalsMasses[signalType][:] for index in range(len(signalMasses)): signalMassesTeV[index] = signalMasses[index] / 1000.0 print signalMassesTeV signalPlotsTeV = [] legendlistTeV = [] for mass in signalMasses: #sigplot = signalFile.Get("mjj_Scaled_"+signalType+"{0}_10fb".format(mass)) sigplot = signalFile.Get("h_mjj_{0}".format(mass)) #sigplot.Scale(luminosity/1000.) #sigplot.Scale(luminosity/1000./10*139) sigplot.SetDirectory(0) sigplottev = newbasicdata.Clone() sigplottev.SetName("sigplot_{0}_{1}_TeV".format( signalType, mass)) for bins in range(sigplot.GetNbinsX() + 2): for bin in range(sigplottev.GetNbinsX() + 2): if sigplot.GetBinLowEdge( bins) / 1000. == sigplottev.GetBinLowEdge(bin): sigplottev.SetBinContent( bin, sigplot.GetBinContent(bins)) sigplottev.SetBinError(bin, sigplot.GetBinError(bins)) sigplotforfitplusbkg = sigplottev.Clone() sigplotforfitplusbkg.SetDirectory(0) sigplotforfitplusbkg.SetName(sigplottev.GetName() + "_forfitplusbkg_TeV") sigplotforfitplusbkg.Scale(signalScalingFactors[signalType]) signalPlotsTeV.append(sigplotforfitplusbkg) thistitle = signalTitles[signalType] + ", {0}= {1} TeV".format( signalAxes[signalType]["X"].split("[GeV]")[0].replace( "M", "m"), mass / 1000.0) legendlistTeV.append(thistitle) extLastBin = lastBin for bin in range(sigplotforfitplusbkg.GetNbinsX()): if bin > extLastBin and sigplotforfitplusbkg.GetBinContent( bin) > 0.01: extLastBin = bin if sigplotforfitplusbkg.GetBinLowEdge( bin) > 1.3 * mass / 1000.0: continue if extLastBin < lastBin: extLastBin = lastBin UserScaleText = signalTitles[signalType] if signalScalingFactors[signalType] == 1: UserScaleText = signalTitles[signalType] else: UserScaleText = UserScaleText + ", #sigma #times " + str( signalScalingFactors[signalType]) outputName = outPath + "FancyFigure1_" + signalType myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ True, bumpLowEdge/1000,bumpHighEdge/1000,\ True,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) outputName = outPath + "FancyFigure1_" + signalType + "_nologx" myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ True, bumpLowEdge/1000,bumpHighEdge/1000,\ False,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) outputName = outPath + "FancyFigure1_" + signalType + "_noBump" myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ False, bumpLowEdge/1000,bumpHighEdge/1000,\ True,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) outputName = outPath + "FancyFigure1_" + signalType + "_noBump_nologx" myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ False, bumpLowEdge/1000,bumpHighEdge/1000,\ False,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) ############################### # Draw the comparison between data and MC in the bottom panel if drawMCComparison: mcFile = ROOT.TFile(mcFileName, "read") if not mcFile: print "Can not open: ", mcFileName return mchist_nominal = mcFile.Get("djet_mjj_nominal") mchist_jesup = mcFile.Get("djet_mjj_JES_up") mchist_jesdown = mcFile.Get("djet_mjj_JES_down") newmchist_nominal = ROOT.TH1D("djet_mjj_nominal_TeV", "djet_mjj_nominal_TeV", len(newbins) - 1, array('d', newbins)) newmchist_jesup = ROOT.TH1D("djet_mjj_jesup_TeV", "djet_mjj_jesup_TeV", len(newbins) - 1, array('d', newbins)) newmchist_jesdown = ROOT.TH1D("djet_mjj_jesdown_TeV", "djet_mjj_jesdown_TeV", len(newbins) - 1, array('d', newbins)) for iBin1 in range(1, newmchist_nominal.GetNbinsX() + 1): for iBin2 in range(1, mchist_nominal.GetNbinsX() + 1): if newmchist_nominal.GetBinLowEdge( iBin1) * 1000 == mchist_nominal.GetBinLowEdge( iBin2): newmchist_nominal.SetBinContent( iBin1, mchist_nominal.GetBinContent(iBin2)) newmchist_nominal.SetBinError( iBin1, mchist_nominal.GetBinError(iBin2)) continue for iBin1 in range(1, newmchist_jesup.GetNbinsX() + 1): for iBin2 in range(1, mchist_jesup.GetNbinsX() + 1): if newmchist_jesup.GetBinLowEdge( iBin1) * 1000 == mchist_jesup.GetBinLowEdge( iBin2): newmchist_jesup.SetBinContent( iBin1, mchist_jesup.GetBinContent(iBin2)) newmchist_jesup.SetBinError( iBin1, mchist_jesup.GetBinError(iBin2)) continue for iBin1 in range(1, newmchist_jesdown.GetNbinsX() + 1): for iBin2 in range(1, mchist_jesdown.GetNbinsX() + 1): if newmchist_jesdown.GetBinLowEdge( iBin1) * 1000 == mchist_jesdown.GetBinLowEdge( iBin2): newmchist_jesdown.SetBinContent( iBin1, mchist_jesdown.GetBinContent(iBin2)) newmchist_jesdown.SetBinError( iBin1, mchist_jesdown.GetBinError(iBin2)) continue tmpRatioHist = newbasicdata.Clone() tmpRatioHist.SetMarkerColor(ROOT.kBlack) tmpRatioHist.Add(newmchist_nominal, -1) tmpRatioHist.Divide(newmchist_nominal) ## If data is 0 then there should be no ratio drawn for iBin in range(1, tmpRatioHist.GetNbinsX() + 1): if newbasicdata.GetBinContent(iBin) == 0: tmpRatioHist.SetBinContent(iBin, 0) tmpRatioHist.SetBinError(iBin, 0) UpDownRatioHists = [] if mchist_jesup.GetEntries() >= 0: tmpJESRatioHist = newmchist_jesup tmpJESRatioHist.Add(newmchist_nominal, -1.) tmpJESRatioHist.Divide(newmchist_nominal) tmpJESRatioHist.SetMarkerColorAlpha(ROOT.kBlue, 0.15) tmpJESRatioHist.SetLineColorAlpha(ROOT.kBlue, 0.15) tmpJESRatioHist.SetFillColorAlpha(ROOT.kBlue, 0.15) tmpJESRatioHist.SetFillStyle(1001) UpDownRatioHists.append(tmpJESRatioHist) if mchist_jesdown.GetEntries() >= 0: tmpJESRatioHist = newmchist_jesdown tmpJESRatioHist.Add(newmchist_nominal, -1.) tmpJESRatioHist.Divide(newmchist_nominal) tmpJESRatioHist.SetMarkerColorAlpha(ROOT.kBlue, 0.15) tmpJESRatioHist.SetLineColorAlpha(ROOT.kBlue, 0.15) tmpJESRatioHist.SetFillColorAlpha(ROOT.kBlue, 0.15) tmpJESRatioHist.SetFillStyle(1001) UpDownRatioHists.append(tmpJESRatioHist) outputName = outPath + "FancyFigure1_" + signalType + "_WithMCRatio" myPainter.drawDataAndFitWithSignalsOverSignificancesWithMCRatio(newbasicdata,newbasicBkg,None,\ newresidualHist, signalPlotsTeV, [], signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","#frac{Data-MC}{MC}","Significance",\ outputName,luminosity,Ecm,firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,\ True,False,False, UserScaleText,True,bumpHunterPVal,True,fitRange[0],fitRange[1],\ newmchist_nominal,tmpRatioHist,UpDownRatioHists[0],UpDownRatioHists[1]) outputName = outPath + "FancyFigure1_" + signalType + "_WithMCRatio_nologx" myPainter.drawDataAndFitWithSignalsOverSignificancesWithMCRatio(newbasicdata,newbasicBkg,None, \ newresidualHist, signalPlotsTeV, [],signalMassesTeV,legendlistTeV, \ "m_{jj} [TeV]","Events","#frac{Data-MC}{MC}","Significance",\ outputName,luminosity,Ecm,firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,\ False,False,False, UserScaleText,True,bumpHunterPVal,True,fitRange[0],fitRange[1],\ newmchist_nominal,tmpRatioHist,UpDownRatioHists[0],UpDownRatioHists[1]) inFile.Close() print "Done."
folderextension = './plotting/SearchPhase/plots/2018-1-12/' # make plots folder i.e. make folder extension if not os.path.exists(folderextension): os.makedirs(folderextension) # Define necessary quantities. luminosity = 1000 Ecm = 13 # Get input doStatSearch = True doAlternate = False # You can use this if you included the alternate fit function in the search phase # Initialize painter myPainter = Morisot() myPainter.setColourPalette("Teals") #myPainter.setEPS(True) myPainter.setLabelType(2) # Sets label type i.e. Internal, Work in progress etc. # See below for label explanation # 0 Just ATLAS # 1 "Preliminary" # 2 "Internal" # 3 "Simulation Preliminary" # 4 "Simulation Internal" # 5 "Simulation" # 6 "Work in Progress" #searchInputFile = ROOT.TFile.Open(filename,"READ")
def getModelLimits(ptCut, coupling, these_massvals,individualLimitFiles, sig_dict, limitsDictOut, \ cutstring = '', xname = "M_{Z'} [GeV]", yname = "#sigma #times #it{A} #times BR [pb]" ): print ptCut, " ", coupling # Initialize painter myPainter = Morisot() myPainter.setColourPalette("ATLAS") myPainter.cutstring = cutstring #myPainter.setEPS(True) myPainter.setLabelType( 2) # Sets label type i.e. Internal, Work in progress etc. # See below for label explanation # 0 Just ATLAS # 1 "Preliminary" # 2 "Internal" # 3 "Simulation Preliminary" # 4 "Simulation Internal" # 5 "Simulation" # 6 "Work in Progress" thisobserved = ROOT.TGraph() thisexpected = ROOT.TGraph() thisexpected_plus1 = ROOT.TGraph() thisexpected_minus1 = ROOT.TGraph() thisexpected_plus2 = ROOT.TGraph() thisexpected_minus2 = ROOT.TGraph() thistheory = ROOT.TGraph() #for mass in these_massvals: for mass in masses: import glob #file_list = glob.glob(individualLimitFiles.format(signal,mass)) individualLimitFiles = individualLimitFiles.replace("PPP", ptCut) individualLimitFiles = individualLimitFiles.replace("CCC", coupling) individualLimitFiles = individualLimitFiles.replace("MMM", str(mass)) file_list = glob.glob( individualLimitFiles.format(ptCut, coupling, mass)) print "individualLimitFiles", individualLimitFiles print("file_list: ", file_list) if len(file_list) == 0: continue allCLs = [] PE_CLs = [] for f in file_list: file = ROOT.TFile.Open(f) if not file or not file.Get("CLOfRealLikelihood"): continue CL = file.Get("CLOfRealLikelihood")[0] PE_tree = file.Get("ensemble_test") if not PE_tree or not CL: continue for event in PE_tree: PE_CLs.append( event.GetBranch("95quantile_marginalized_2"). GetListOfLeaves().At(0).GetValue()) allCLs.append(CL) if len(allCLs) == 0: continue expCLs = GetCenterAndSigmaDeviations(PE_CLs) print mass, allCLs[0], expCLs[2], len(PE_CLs) m = float(mass) / 1000. obsCL = allCLs[0] / luminosity expCLs = [e / luminosity for e in expCLs] thisobserved.SetPoint(thisobserved.GetN(), m, obsCL) thisexpected_minus2.SetPoint(thisexpected_minus2.GetN(), m, expCLs[0]) thisexpected_minus1.SetPoint(thisexpected_minus1.GetN(), m, expCLs[1]) thisexpected.SetPoint(thisexpected.GetN(), m, expCLs[2]) thisexpected_plus1.SetPoint(thisexpected_plus1.GetN(), m, expCLs[3]) thisexpected_plus2.SetPoint(thisexpected_plus2.GetN(), m, expCLs[4]) #c = SignalCouplings[signal] #print sig_dict[c] #signal_info = sig_dict[c]['%1.2f'%m] #signal_acc = signal_info['acc'] #signal_thxsec = signal_info['theory'] #signal_info['exp'] = expCLs[2] #signal_info['obs'] = obsCL #signal_info['exp+1'] = expCLs[3] #signal_info['exp+2'] = expCLs[4] #signal_info['exp-1'] = expCLs[1] #signal_info['exp-2'] = expCLs[0] #if c not in limitsDictOut: limitsDictOut[c] = {} limitsDictOut = {} #limitsDictOut['%1.2f'%m] = signal_info #t#histheory.SetPoint(thistheory.GetN(),m,signal_acc*signal_thxsec) #if not c in ZPrimeLimits: ZPrimeLimits[c] = {} #ZPrimeLimits[c][m] = {'obs':obsCL,'exp':expCLs[2],'th':signal_acc*signal_thxsec} if thisobserved.GetN() == 0: print "No limits found for couping: ", coupling, "ptCut: ", ptCut return limitsDictOut thisexpected1 = makeBand(thisexpected_minus1, thisexpected_plus1) thisexpected2 = makeBand(thisexpected_minus2, thisexpected_plus2) outputName = folderextension + "Limits_pH" + ptCut + '_gSM' + coupling + "_" + dataset + plotextension xlow = 'automatic' # (int(masses[signal][0]) - 100)/1000. xhigh = 'automatic' #(int(masses[signal][-1]) + 100)/1000. #myPainter.drawLimitSettingPlotObservedExpected(thisobserved,thisexpected,thisexpected1, thisexpected2, thistheory,SignalTitles[signal],\ # outputName, xname,yname,luminosity,Ecm,xlow,xhigh,2E-4,100,False) myPainter.drawLimitSettingPlotObservedExpected(thisobserved,thisexpected,thisexpected1, thisexpected2,"",\ "",outputName, xname,yname,luminosity,Ecm,xlow,xhigh,2E-4,100,False) return limitsDictOut
def getGaussianLimits( inputfileform, ratios, dataset, luminosity, cutstring, makePlot = True, outfolder = "./plots/"): basicInputFiles = {} for r in ratios: basicInputFiles[r] = [] import glob file_list = glob.glob(inputfileform) for f in file_list: ratio_str = f.split('.')[-2].split('_')[-1] if ratio_str == 'resolutionwidth': ratio = 0.0 else: ratio = float(ratio_str)/1000. if ratio in basicInputFiles: basicInputFiles[ratio].append(f) # Initialize painter myPainter = Morisot() # Internal myPainter.setLabelType(2) myPainter.cutstring = cutstring #myPainter.setLabelType(1) minMassVal = {} values = {} mass_list = [] allobserved = [] allexpected = [] allexpected1Sigma = [] allexpected2Sigma = [] results = {} for r in ratios: values[r] = {} for f in basicInputFiles[r]: file = ROOT.TFile.Open(f) CLs = file.Get("CLsPerMass_widthToMass%d"%(r*1000)) masses = file.Get("massesUsed") if masses == None: continue for i,mass in enumerate(masses) : #if dataset == "J100" and mass < 700: continue if "J75" in dataset and not makePlot and mass > 700: continue if mass > 1850: continue mass_list += [mass] PE_tree = file.Get("ensemble_tree_%d_%d"%(mass,r*1000)) PE_CLs = [] for event in PE_tree: PE_CLs.append( event.GetBranch("95quantile_marginalized_1").GetListOfLeaves().At(0).GetValue() ) expCLs = GetCenterAndSigmaDeviations(PE_CLs) #print mass, CLs[i]/luminosity, [e/luminosity for e in expCLs] if mass not in values[r]: values[r][mass] = {'obs': [], 'exp': [], 'PEs': [] } values[r][mass]['obs'].append(CLs[i]/luminosity) values[r][mass]['exp'].append(expCLs[2]/luminosity) values[r][mass]['PEs'] += [e/luminosity for e in PE_CLs] mass_list = sorted(list(set(mass_list))) thisobserved = ROOT.TGraph() thisexpected = ROOT.TGraph() thisexpected_plus1 = ROOT.TGraph() thisexpected_minus1 = ROOT.TGraph() thisexpected_plus2 = ROOT.TGraph() thisexpected_minus2 = ROOT.TGraph() for m in mass_list : if m not in values[r]: continue expCLs = GetCenterAndSigmaDeviations(values[r][m]['PEs']) print r, m, values[r][m]['obs'][0], values[r][m]['exp'][0], len(values[r][m]['PEs']) thisobserved.SetPoint( thisobserved.GetN(),m,values[r][m]['obs'][0]) thisexpected_minus2.SetPoint(thisexpected_minus2.GetN(),m,expCLs[0]) thisexpected_minus1.SetPoint(thisexpected_minus1.GetN(),m,expCLs[1]) thisexpected.SetPoint( thisexpected.GetN(),m,expCLs[2]) thisexpected_plus1.SetPoint( thisexpected_plus1.GetN(),m,expCLs[3]) thisexpected_plus2.SetPoint( thisexpected_plus2.GetN(),m,expCLs[4]) allobserved.append(thisobserved) allexpected.append(thisexpected) thisexpected1Sigma = makeBand(thisexpected_minus1,thisexpected_plus1) thisexpected2Sigma = makeBand(thisexpected_minus2,thisexpected_plus2) if r == 0: allexpected1Sigma.append(thisexpected1Sigma) allexpected2Sigma.append(thisexpected2Sigma) else: allexpected1Sigma.append(ROOT.TGraph()) allexpected2Sigma.append(ROOT.TGraph()) results[r] = {'obs':thisobserved, 'exp': thisexpected,'exp1': thisexpected1Sigma,'exp2': thisexpected2Sigma} if makePlot: #print ratios #print [names['%1.2f'%r] for r in ratios] myPainter.drawSeveralObservedExpectedLimits(allobserved,allexpected,allexpected1Sigma,allexpected2Sigma,[names['%1.2f'%r] for r in ratios],outfolder+"GenericGaussians_"+dataset,"m_{G} [GeV]",\ "#sigma #times #it{A} #times BR [pb]",luminosity,13,400,2000,1E-2,50,[],ATLASLabelLocation="BottomR",cutLocation="Left") return results
def main(): # User controlled arguments parser = argparse.ArgumentParser() parser.add_argument("--inFileName", type=str, default="", help="The path to the input file from SearchPhase") parser.add_argument("--outPath", type=str, default="./plotting/SearchPhase/plots/", help="The path prefix (directory) where you want the output plots") parser.add_argument("--lumi", type=float, default=1, help="Luminosity in fb-1") parser.add_argument("--doAlternate", action='store_true', help="Compare Nominal and Alternate Fit") parser.add_argument("--overlaidSignal", action='store_true', help="Overlaid Signal on Background") parser.add_argument("--signalFileName", type=str, default="", help="Signal histogram overlaid on background") parser.add_argument("--drawMCComparison", action='store_true', help="Draw the comparison between data and MC") parser.add_argument("--mcFileName", type=str, default="", help="MC File Name") args = parser.parse_args() inFileName = args.inFileName outPath = args.outPath luminosity = 1000*args.lumi doAlternate = args.doAlternate overlaidSignal = args.overlaidSignal signalFileName = args.signalFileName drawMCComparison = args.drawMCComparison mcFileName = args.mcFileName print "===================================" print "Executing Run_SearchPhase.py with :" print "inFileName : ",inFileName print "outPath : ",outPath print "Lumi : ", args.lumi print "doAlternate: ", doAlternate print "overlaidSignal: ", overlaidSignal if overlaidSignal: print " signalFileName: ", signalFileName print "drawMCComparison: ", drawMCComparison print "mcFileName: ", mcFileName print "===================================" # Get input (the rootfile name should match that specified in the SearchPhase.config file) searchInputFile = ROOT.TFile(inFileName, "READ") # make plots folder i.e. make folder extension if not os.path.exists(outPath): os.makedirs(outPath) # Define necessary quantities. Ecm = 13 # Get input doStatSearch = False #doAlternate = True # You can use this if you included the alternate fit function in the search phase # Initialize painter myPainter = Morisot() myPainter.setColourPalette("Teals") #myPainter.setEPS(True) myPainter.setLabelType(2) # Sets label type i.e. Internal, Work in progress etc. # See below for label explanation # 0 Just ATLAS # 1 "Preliminary" # 2 "Internal" # 3 "Simulation Preliminary" # 4 "Simulation Internal" # 5 "Simulation" # 6 "Work in Progress" # Retrieve search phase inputs basicData = searchInputFile.Get("basicData") basicBkg = searchInputFile.Get("basicBkgFrom4ParamFit") #normalizedData = searchInputFile.Get("normalizedData") #normalizedBkgFrom4ParamFit = searchInputFile.Get("normalizedBkgFrom4ParamFit") residualHist = searchInputFile.Get("residualHist") relativeDiffHist = searchInputFile.Get("relativeDiffHist") sigOfDiffHist = searchInputFile.Get("sigOfDiffHist") logLikelihoodPseudoStatHist = searchInputFile.Get("logLikelihoodStatHistNullCase") chi2PseudoStatHist = searchInputFile.Get("chi2StatHistNullCase") bumpHunterStatHist = searchInputFile.Get("bumpHunterStatHistNullCase") #theFitFunction = searchInputFile.Get('theFitFunction') bumpHunterTomographyPlot = searchInputFile.Get('bumpHunterTomographyFromPseudoexperiments') bumpHunterStatOfFitToData = searchInputFile.Get('bumpHunterStatOfFitToData') # nominal background +- statistical uncertainty(uncertainty from fitting parameters) nomPlus1 = searchInputFile.Get("nominalBkgFromFit_plus1Sigma") nomMinus1 = searchInputFile.Get("nominalBkgFromFit_minus1Sigma") #nominal background +- uncertainties from fitting function choice if doAlternate : alternateBkg = searchInputFile.Get("alternateFitOnRealData") nomWithNewFuncErrSymm = searchInputFile.Get("nomOnDataWithSymmetricRMSScaleFuncChoiceErr") valueNewFuncErrDirected = searchInputFile.Get("nomOnDataWithDirectedRMSScaleFuncChoiceErr") logLOfFitToDataVec = searchInputFile.Get('logLOfFitToData') chi2OfFitToDataVec = searchInputFile.Get('chi2OfFitToData') statOfFitToData = searchInputFile.Get('bumpHunterPLowHigh') logLOfFitToData = logLOfFitToDataVec[0] logLPVal = logLOfFitToDataVec[1] chi2OfFitToData = chi2OfFitToDataVec[0] chi2PVal = chi2OfFitToDataVec[1] bumpHunterStatFitToData = statOfFitToData[0] bumpHunterPVal = bumpHunterStatOfFitToData[1] bumpLowEdge = statOfFitToData[1] bumpHighEdge = statOfFitToData[2] #NDF = searchInputFile.Get('NDF')[0] #fitparams = searchInputFile.Get('fittedParameters') print "logL of fit to data is",logLOfFitToData print "logL pvalue is",logLPVal print "chi2 of fit to data is",chi2OfFitToData #print "NDF is",NDF #print "chi2/NDF is",chi2OfFitToData/NDF print "chi2 pvalue is",chi2PVal print "bump hunter stat of fit to data is",bumpHunterStatFitToData print "bumpLowEdge, bumpHighEdge are",bumpLowEdge,bumpHighEdge print "BumpHunter pvalue is",bumpHunterPVal print "which is Z value of",GetZVal(bumpHunterPVal,True) #print "Fitted parameters were:",fitparams # Find range firstBin = 1000 lastBin = basicData.GetNbinsX() print lastBin while (basicData.GetBinContent(lastBin)==0 and lastBin > 0) : lastBin = lastBin - 1 # Calculate from fit range fitRange = searchInputFile.Get("FitRange") firstBin = basicData.FindBin(fitRange[0]) lastBin = basicData.FindBin(fitRange[1]) print "New firstbin, lastbin",firstBin,lastBin # Convert plots into desired final form standardbins = basicData.GetXaxis().GetXbins() newbins = []#ROOT.TArrayD(standardbins.GetSize()) for np in range(standardbins.GetSize()) : newbins.append(standardbins[np]/1000) # Make new versions of old plots newbasicdata = ROOT.TH1D("basicData_TeV","basicData_TeV",len(newbins)-1,array('d',newbins)) newbasicBkg = ROOT.TH1D("basicBkg_TeV","basicBkg_TeV",len(newbins)-1,array('d',newbins)) newresidualHist = ROOT.TH1D("residualHist_TeV","residualHist_TeV",len(newbins)-1,array('d',newbins)) newrelativeDiffHist = ROOT.TH1D("relativeDiffHist_TeV","relativeDiffHist_TeV",len(newbins)-1,array('d',newbins)) newsigOfDiffHist = ROOT.TH1D("sigOfDiffHist_TeV","sigOfDiffHist_TeV",len(newbins)-1,array('d',newbins)) newNomPlus1= ROOT.TH1D("nomPlus1_TeV","nomPlus1_TeV",len(newbins)-1,array('d',newbins)) newNomMinus1= ROOT.TH1D("nomMinus1_TeV","nomMinus1_TeV",len(newbins)-1,array('d',newbins)) newAlternateBkg = ROOT.TH1D("alternateBkg_TeV","alternateBkg_TeV",len(newbins)-1,array('d',newbins)) newnomWithNewFuncErrSymm = ROOT.TH1D("nomWithNewFuncErrSymm_TeV","nomWithNewFuncErrSymm_TeV",len(newbins)-1,array('d',newbins)) newValueNewFuncErrDirected= ROOT.TH1D("nomWithNewFuncErrDirected_TeV","nomWithNewFuncErrDirected_TeV",len(newbins)-1,array('d',newbins)) for histnew,histold in [[newbasicdata,basicData],[newbasicBkg,basicBkg],\ [newNomPlus1,nomPlus1],[newNomMinus1,nomMinus1], \ [newresidualHist,residualHist],[newrelativeDiffHist,relativeDiffHist],\ [newsigOfDiffHist,sigOfDiffHist]] : for bin in range(histnew.GetNbinsX()+2) : histnew.SetBinContent(bin,histold.GetBinContent(bin)) histnew.SetBinError(bin,histold.GetBinError(bin)) if doAlternate: icount=0 for histnew,histold in [[newAlternateBkg,alternateBkg], [newnomWithNewFuncErrSymm,nomWithNewFuncErrSymm],\ [newValueNewFuncErrDirected,valueNewFuncErrDirected]] : print "Count : ",icount print histnew.GetName() print histold.GetName() icount+=1 for bin in range(histnew.GetNbinsX()+2) : histnew.SetBinContent(bin,histold.GetBinContent(bin)) histnew.SetBinError(bin,histold.GetBinError(bin)) # Significances for Todd ToddSignificancesHist = ROOT.TH1D("ToddSignificancesHist","ToddSignificancesHist",100,-5,5) for bin in range(0,newresidualHist.GetNbinsX()+1): if bin < firstBin: continue if bin > lastBin: continue residualValue = newresidualHist.GetBinContent(bin) ToddSignificancesHist.Fill(residualValue) # Search phase plots myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1'.format(outPath), luminosity,13,fitRange[0],fitRange[1], firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],True,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nologx'.format(outPath), luminosity,13,fitRange[0],fitRange[1], firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],False,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nobump'.format(outPath), luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin+2,False,bumpLowEdge,bumpHighEdge,[],True,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nobump_nologx'.format(outPath), luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,bumpLowEdge,bumpHighEdge,[],False,False,[],True,bumpHunterPVal) myPainter.drawPseudoExperimentsWithObservedStat(logLikelihoodPseudoStatHist,float(logLOfFitToData),logLPVal,0,luminosity,13, 'logL statistic','Pseudo-exeperiments',"{0}/logLStatPlot".format(outPath)) myPainter.drawPseudoExperimentsWithObservedStat(chi2PseudoStatHist,float(chi2OfFitToData),chi2PVal,0,luminosity,13, "#chi^{2}",'Pseudo-exeperiments',"{0}/chi2StatPlot".format(outPath)) myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatHist,float(bumpHunterStatFitToData),bumpHunterPVal,0,luminosity,13, 'BumpHunter','Pseudo-exeperiments',"{0}/bumpHunterStatPlot".format(outPath)) myPainter.drawBumpHunterTomographyPlot(bumpHunterTomographyPlot,"{0}/bumpHunterTomographyPlot".format(outPath)) # Various significance plots myPainter.drawBasicHistogram(ToddSignificancesHist,-1,-1,"Residuals","Entries","{0}/ToddSignificancesHist".format(outPath)) myPainter.drawSignificanceHistAlone(newrelativeDiffHist,"m_{jj} [TeV]","(D - B)/B","{0}/significanceonlyplot".format(outPath)) myPainter.drawSignificanceHistAlone(newsigOfDiffHist,"m_{jj} [TeV]","(D - B)/#sqrt{Derr^{2}+Berr^{2}}","{0}/sigofdiffonlyplot".format(outPath)) # Now to make the one comparing uncertainties placeHolderNom = newbasicBkg.Clone() placeHolderNom.SetName("placeHolderNom") nomPlusSymmFuncErr = newbasicBkg.Clone() nomPlusSymmFuncErr.SetName("nomPlusNewFuncErr") nomMinusSymmFuncErr = newbasicBkg.Clone() nomMinusSymmFuncErr.SetName("nomMinusNewFuncErr") for bin in range(nomPlusSymmFuncErr.GetNbinsX()+2) : nomPlusSymmFuncErr.SetBinContent(bin,newnomWithNewFuncErrSymm.GetBinContent(bin) + newnomWithNewFuncErrSymm.GetBinError(bin)) nomMinusSymmFuncErr.SetBinContent(bin,newnomWithNewFuncErrSymm.GetBinContent(bin) - newnomWithNewFuncErrSymm.GetBinError(bin)) if doAlternate: myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Fit uncertainty","Function choice"],"{0}/compareFitQualityAndAlternateFit".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newAlternateBkg]],firstBin,lastBin,True,True,True,False,False) myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Function choice","Alternate function"],"{0}/compareFitChoiceAndAlternateFit".format(outPath),True,[[nomPlusSymmFuncErr,nomMinusSymmFuncErr],[placeHolderNom,newAlternateBkg]],firstBin,lastBin,True,True,True,False,False) myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Fit uncertainty","Function choice"],"{0}/compareFitQualtiyAndFitChoice".format(outPath),True,[[newNomPlus1,newNomMinus1],[nomPlusSymmFuncErr,nomMinusSymmFuncErr]],firstBin,lastBin,True,True,True,False,False) myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical fit uncertainty","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],firstBin,lastBin,True,True,True,False,False) # Overlay nominal and alternate fit functions myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Alternate function"],"{0}/compareFitChoices".format(outPath),True,[[placeHolderNom,newAlternateBkg]],firstBin,lastBin,True,True,True,False,False) # Make a ratio histogram for bottom plot. altFitRatio = ROOT.TH1D("altFitRatio","altFitRatio",len(newbins)-1,array('d',newbins)) for bin in range(0,altFitRatio.GetNbinsX()+1) : if newbasicBkg.GetBinContent(bin) == 0 : altFitRatio.SetBinContent(bin,0) else : altFitRatio.SetBinContent(bin,(valueNewFuncErrDirected.GetBinContent(bin)-newbasicBkg.GetBinContent(bin))/newbasicBkg.GetBinContent(bin)) # Make a ratio histogram for paper plot. PlusNomRatio = ROOT.TH1D("PlusNomRatio","PlusNomRatio",len(newbins)-1,array('d',newbins)) for bin in range(0,PlusNomRatio.GetNbinsX()+1) : if newbasicBkg.GetBinContent(bin) == 0 : PlusNomRatio.SetBinContent(bin,0) else : PlusNomRatio.SetBinContent(bin,(newNomPlus1.GetBinContent(bin)-newbasicBkg.GetBinContent(bin))/newbasicBkg.GetBinContent(bin)) MinusNomRatio = ROOT.TH1D("MinusNomRatio","MinusNomRatio",len(newbins)-1,array('d',newbins)) for bin in range(0,MinusNomRatio.GetNbinsX()+1) : if newbasicBkg.GetBinContent(bin) == 0 : MinusNomRatio.SetBinContent(bin,0) else : MinusNomRatio.SetBinContent(bin,(newNomMinus1.GetBinContent(bin)-newbasicBkg.GetBinContent(bin))/newbasicBkg.GetBinContent(bin)) myPainter.drawDataWithFitAsHistogramAndResidual(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatio".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin,True,True,True,False,False,True,False,True,bumpHunterPVal,True,fitRange[0],fitRange[1]) myPainter.drawDataWithFitAsHistogramAndResidualPaper(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatioPaper".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin,True,True,True,False,False) myPainter.drawMultipleFitsAndResiduals(newbasicdata,[newbasicBkg,newValueNewFuncErrDirected],[altFitRatio],["Nominal fit","Function choice"],"m_{jj} [TeV]","Events",["(alt-nom)/nom"],"{0}/directedFuncChoiceVersusNominal_withRatio".format(outPath),luminosity,13,firstBin,lastBin) ####### Draw Signal Template overlaid on Background########### if overlaidSignal: signalFile = ROOT.TFile.Open(signalFileName, "read") if not signalFile: print signalFileName, " doesn't exist!!!!" return # setup signal information #signalTitles = {"QStar": "#it{q}*"} #signalTypes = ["QStar"] #signalsMasses = {"QStar":[4000, 5000]} #signalScalingFactors = {"QStar": 0.1} #signalAxes = {"QStar": {"X" : "M_{#it{q}*} [GeV]", "Y": "#sigma #times #it{A} #times BR [pb]"} } signalTitles = {"DMZprime": "DM #it{Z}'"} signalTypes = ["DMZprime"] signalsMasses = {"DMZprime":[4000, 5000]} signalScalingFactors = {"DMZprime": 1000} signalAxes = {"DMZprime": {"X" : "M_{#it{q}*} [GeV]", "Y": "#sigma #times #it{A} #times BR [pb]"} } for signalType in signalTypes: print "in signal",signalType signalMasses = signalsMasses[signalType] signalMassesTeV = signalsMasses[signalType][:] for index in range(len(signalMasses)) : signalMassesTeV[index] = signalMasses[index]/1000.0 print signalMassesTeV signalPlotsTeV = [] legendlistTeV = [] for mass in signalMasses : #sigplot = signalFile.Get("h_mjj_{0}".format(mass)) sigplot = signalFile.Get("{0}_{1}".format(signalType, mass)) sigplot.SetDirectory(0) sigplottev = newbasicdata.Clone() sigplottev.SetName("sigplot_{0}_{1}_TeV".format(signalType,mass)) for bins in range(sigplot.GetNbinsX()+2) : for bin in range(sigplottev.GetNbinsX()+2) : if sigplot.GetBinLowEdge(bins)/1000.==sigplottev.GetBinLowEdge(bin) : sigplottev.SetBinContent(bin,sigplot.GetBinContent(bins)) sigplottev.SetBinError(bin,sigplot.GetBinError(bins)) sigplotforfitplusbkg = sigplottev.Clone() sigplotforfitplusbkg.SetDirectory(0) sigplotforfitplusbkg.SetName(sigplottev.GetName()+"_forfitplusbkg_TeV") sigplotforfitplusbkg.Scale(signalScalingFactors[signalType]) signalPlotsTeV.append(sigplotforfitplusbkg) thistitle = signalTitles[signalType] + ", {0}= {1} TeV".format(signalAxes[signalType]["X"].split("[GeV]")[0].replace("M","m"),mass/1000.0) legendlistTeV.append(thistitle) extLastBin = lastBin for bin in range(sigplotforfitplusbkg.GetNbinsX()) : if bin > extLastBin and sigplotforfitplusbkg.GetBinContent(bin) > 0.01 : extLastBin = bin if sigplotforfitplusbkg.GetBinLowEdge(bin) > 1.3*mass/1000.0 : continue if extLastBin < lastBin : extLastBin = lastBin UserScaleText = signalTitles[signalType] if signalScalingFactors[signalType] == 1 : UserScaleText = signalTitles[signalType] else : UserScaleText = UserScaleText+", #sigma #times "+str(signalScalingFactors[signalType]) outputName = outPath+"FancyFigure1_"+signalType myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ True, bumpLowEdge/1000,bumpHighEdge/1000,\ True,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) outputName = outPath+"FancyFigure1_"+signalType+"_nologx" myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ True, bumpLowEdge/1000,bumpHighEdge/1000,\ False,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) outputName = outPath+"FancyFigure1_"+signalType+"_noBump" myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ False, bumpLowEdge/1000,bumpHighEdge/1000,\ True,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) outputName = outPath+"FancyFigure1_"+signalType+"_noBump_nologx" myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\ newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\ Ecm, firstBin,extLastBin,\ False, bumpLowEdge/1000,bumpHighEdge/1000,\ False,False,True,UserScaleText,True,bumpHunterPVal, True, \ fitRange[0], fitRange[1]) ############################### # Draw the comparison between data and MC in the bottom panel if drawMCComparison: mcFile = ROOT.TFile(mcFileName, "read") ; if not mcFile: print "Can not open: ", mcFileName return mchist_nominal = mcFile.Get("djet_mjj_nominal") mchist_jesup = mcFile.Get("djet_mjj_JES_up") mchist_jesdown = mcFile.Get("djet_mjj_JES_down") newmchist_nominal=ROOT.TH1D("djet_mjj_nominal_TeV","djet_mjj_nominal_TeV",len(newbins)-1,array('d',newbins)) newmchist_jesup=ROOT.TH1D("djet_mjj_jesup_TeV","djet_mjj_jesup_TeV",len(newbins)-1,array('d',newbins)) newmchist_jesdown=ROOT.TH1D("djet_mjj_jesdown_TeV","djet_mjj_jesdown_TeV",len(newbins)-1,array('d',newbins)) for iBin1 in range(1, newmchist_nominal.GetNbinsX()+1): for iBin2 in range(1, mchist_nominal.GetNbinsX()+1): if newmchist_nominal.GetBinLowEdge(iBin1)*1000==mchist_nominal.GetBinLowEdge(iBin2): newmchist_nominal.SetBinContent(iBin1, mchist_nominal.GetBinContent(iBin2)) newmchist_nominal.SetBinError(iBin1, mchist_nominal.GetBinError(iBin2)) continue for iBin1 in range(1, newmchist_jesup.GetNbinsX()+1): for iBin2 in range(1, mchist_jesup.GetNbinsX()+1): if newmchist_jesup.GetBinLowEdge(iBin1)*1000==mchist_jesup.GetBinLowEdge(iBin2): newmchist_jesup.SetBinContent(iBin1, mchist_jesup.GetBinContent(iBin2)) newmchist_jesup.SetBinError(iBin1, mchist_jesup.GetBinError(iBin2)) continue for iBin1 in range(1, newmchist_jesdown.GetNbinsX()+1): for iBin2 in range(1, mchist_jesdown.GetNbinsX()+1): if newmchist_jesdown.GetBinLowEdge(iBin1)*1000==mchist_jesdown.GetBinLowEdge(iBin2): newmchist_jesdown.SetBinContent(iBin1, mchist_jesdown.GetBinContent(iBin2)) newmchist_jesdown.SetBinError(iBin1, mchist_jesdown.GetBinError(iBin2)) continue tmpRatioHist = newbasicdata.Clone() tmpRatioHist.SetMarkerColor(ROOT.kBlack) tmpRatioHist.Add(newmchist_nominal,-1) tmpRatioHist.Divide(newmchist_nominal) ## If data is 0 then there should be no ratio drawn for iBin in range(1, tmpRatioHist.GetNbinsX()+1): if newbasicdata.GetBinContent(iBin) == 0: tmpRatioHist.SetBinContent(iBin, 0) tmpRatioHist.SetBinError(iBin, 0) UpDownRatioHists = [] if mchist_jesup.GetEntries() >= 0: tmpJESRatioHist = newmchist_jesup tmpJESRatioHist.Add( newmchist_nominal, -1. ) tmpJESRatioHist.Divide( newmchist_nominal ) tmpJESRatioHist.SetMarkerColorAlpha( ROOT.kBlue,0.15) tmpJESRatioHist.SetLineColorAlpha( ROOT.kBlue,0.15) tmpJESRatioHist.SetFillColorAlpha( ROOT.kBlue, 0.15) tmpJESRatioHist.SetFillStyle(1001) UpDownRatioHists.append(tmpJESRatioHist) if mchist_jesdown.GetEntries() >= 0: tmpJESRatioHist = newmchist_jesdown tmpJESRatioHist.Add( newmchist_nominal, -1. ) tmpJESRatioHist.Divide( newmchist_nominal ) tmpJESRatioHist.SetMarkerColorAlpha( ROOT.kBlue,0.15) tmpJESRatioHist.SetLineColorAlpha( ROOT.kBlue,0.15) tmpJESRatioHist.SetFillColorAlpha( ROOT.kBlue, 0.15) tmpJESRatioHist.SetFillStyle(1001) UpDownRatioHists.append(tmpJESRatioHist) outputName = outPath+"FancyFigure1_"+signalType+"_WithMCRatio" myPainter.drawDataAndFitWithSignalsOverSignificancesWithMCRatio(newbasicdata,newbasicBkg,None,\ newresidualHist, signalPlotsTeV, [], signalMassesTeV,legendlistTeV,\ "m_{jj} [TeV]","Events","#frac{Data-MC}{MC}","Significance",\ outputName,luminosity,Ecm,firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,\ True,False,False, UserScaleText,True,bumpHunterPVal,True,fitRange[0],fitRange[1],\ newmchist_nominal,tmpRatioHist,UpDownRatioHists[0],UpDownRatioHists[1]) outputName = outPath+"FancyFigure1_"+signalType+"_WithMCRatio_nologx" myPainter.drawDataAndFitWithSignalsOverSignificancesWithMCRatio(newbasicdata,newbasicBkg,None, \ newresidualHist, signalPlotsTeV, [],signalMassesTeV,legendlistTeV, \ "m_{jj} [TeV]","Events","#frac{Data-MC}{MC}","Significance",\ outputName,luminosity,Ecm,firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,\ False,False,False, UserScaleText,True,bumpHunterPVal,True,fitRange[0],fitRange[1],\ newmchist_nominal,tmpRatioHist,UpDownRatioHists[0],UpDownRatioHists[1]) searchInputFile.Close() del searchInputFile print "Done."
def main(): # User controlled arguments parser = argparse.ArgumentParser() parser.add_argument("--inFileName", type=str, default="", help="The path to the input file from SearchPhase") parser.add_argument( "--outPath", type=str, default="./plotting/SearchPhase/plots/", help="The path prefix (directory) where you want the output plots") parser.add_argument("--lumi", type=float, default=1, help="Luminosity") args = parser.parse_args() inFileName = args.inFileName outPath = args.outPath print "===================================" print "Executing Run_SearchPhase.py with :" print "inFileName : ", inFileName print "outPath : ", outPath print "Lumi : ", args.lumi print "===================================" # Get input (the rootfile name should match that specified in the SearchPhase.config file) searchInputFile = ROOT.TFile(inFileName, "READ") # make plots folder i.e. make folder extension if not os.path.exists(outPath): os.makedirs(outPath) # Define necessary quantities. luminosity = 1000 * args.lumi Ecm = 13 # Get input doStatSearch = False doAlternate = True # You can use this if you included the alternate fit function in the search phase # Initialize painter myPainter = Morisot() myPainter.setColourPalette("Teals") #myPainter.setEPS(True) myPainter.setLabelType( 2) # Sets label type i.e. Internal, Work in progress etc. # See below for label explanation # 0 Just ATLAS # 1 "Preliminary" # 2 "Internal" # 3 "Simulation Preliminary" # 4 "Simulation Internal" # 5 "Simulation" # 6 "Work in Progress" # Retrieve search phase inputs basicData = searchInputFile.Get("basicData") normalizedData = searchInputFile.Get("normalizedData") basicBkgFrom4ParamFit = searchInputFile.Get("basicBkgFrom4ParamFit") normalizedBkgFrom4ParamFit = searchInputFile.Get( "normalizedBkgFrom4ParamFit") residualHist = searchInputFile.Get("residualHist") relativeDiffHist = searchInputFile.Get("relativeDiffHist") sigOfDiffHist = searchInputFile.Get("sigOfDiffHist") logLikelihoodPseudoStatHist = searchInputFile.Get( "logLikelihoodStatHistNullCase") chi2PseudoStatHist = searchInputFile.Get("chi2StatHistNullCase") bumpHunterStatHist = searchInputFile.Get("bumpHunterStatHistNullCase") theFitFunction = searchInputFile.Get('theFitFunction') bumpHunterTomographyPlot = searchInputFile.Get( 'bumpHunterTomographyFromPseudoexperiments') bumpHunterStatOfFitToData = searchInputFile.Get( 'bumpHunterStatOfFitToData') if doAlternate: searchInputFile.ls() alternateBkg = searchInputFile.Get("alternateFitOnRealData") nomPlus1 = searchInputFile.Get("nominalBkgFromFit_plus1Sigma") nomMinus1 = searchInputFile.Get("nominalBkgFromFit_minus1Sigma") nomWithNewFuncErrSymm = searchInputFile.Get( "nomOnDataWithSymmetricRMSScaleFuncChoiceErr") valueNewFuncErrDirected = searchInputFile.Get( "nomOnDataWithDirectedRMSScaleFuncChoiceErr") logLOfFitToDataVec = searchInputFile.Get('logLOfFitToData') chi2OfFitToDataVec = searchInputFile.Get('chi2OfFitToData') statOfFitToData = searchInputFile.Get('bumpHunterPLowHigh') logLOfFitToData = logLOfFitToDataVec[0] logLPVal = logLOfFitToDataVec[1] chi2OfFitToData = chi2OfFitToDataVec[0] chi2PVal = chi2OfFitToDataVec[1] bumpHunterStatFitToData = statOfFitToData[0] bumpHunterPVal = bumpHunterStatOfFitToData[1] bumpLowEdge = statOfFitToData[1] bumpHighEdge = statOfFitToData[2] #NDF = searchInputFile.Get('NDF')[0] fitparams = searchInputFile.Get('fittedParameters') print "logL of fit to data is", logLOfFitToData print "logL pvalue is", logLPVal print "chi2 of fit to data is", chi2OfFitToData #print "NDF is",NDF #print "chi2/NDF is",chi2OfFitToData/NDF print "chi2 pvalue is", chi2PVal print "bump hunter stat of fit to data is", bumpHunterStatFitToData print "bumpLowEdge, bumpHighEdge are", bumpLowEdge, bumpHighEdge print "BumpHunter pvalue is", bumpHunterPVal print "which is Z value of", GetZVal(bumpHunterPVal, True) print "Fitted parameters were:", fitparams # Find range firstBin = 1000 lastBin = basicData.GetNbinsX() while (basicData.GetBinContent(lastBin) == 0 and lastBin > 0): lastBin -= 1 if (firstBin > lastBin): firstBin = 1 lastBin = basicData.GetNbinsX() print "First bin = ", firstBin, ": lower edge at", basicData.GetBinLowEdge( firstBin) # Calculate from fit range fitRange = searchInputFile.Get("FitRange") firstBin = basicData.FindBin(fitRange[0]) - 1 lastBin = basicData.FindBin(fitRange[1]) print "New firstbin, lastbin", firstBin, lastBin #firstBin = basicData.FindBin(1100) #print "and another firstbin is",firstBin # Convert plots into desired final form standardbins = basicData.GetXaxis().GetXbins() newbins = [] #ROOT.TArrayD(standardbins.GetSize()) for np in range(standardbins.GetSize()): newbins.append(standardbins[np] / 1000) # Make never versions of old plots newbasicdata = ROOT.TH1D("basicData_TeV", "basicData_TeV", len(newbins) - 1, array('d', newbins)) newbasicBkgFrom4ParamFit = ROOT.TH1D("basicBkgFrom4ParamFit_TeV", "basicBkgFrom4ParamFit_TeV", len(newbins) - 1, array('d', newbins)) newresidualHist = ROOT.TH1D("residualHist_TeV", "residualHist_TeV", len(newbins) - 1, array('d', newbins)) newrelativeDiffHist = ROOT.TH1D("relativeDiffHist_TeV", "relativeDiffHist_TeV", len(newbins) - 1, array('d', newbins)) newsigOfDiffHist = ROOT.TH1D("sigOfDiffHist_TeV", "sigOfDiffHist_TeV", len(newbins) - 1, array('d', newbins)) newAlternateBkg = ROOT.TH1D("alternateBkg_TeV", "alternateBkg_TeV", len(newbins) - 1, array('d', newbins)) newNomPlus1 = ROOT.TH1D("nomPlus1_TeV", "nomPlus1_TeV", len(newbins) - 1, array('d', newbins)) newNomMinus1 = ROOT.TH1D("nomMinus1_TeV", "nomMinus1_TeV", len(newbins) - 1, array('d', newbins)) newnomWithNewFuncErrSymm = ROOT.TH1D("nomWithNewFuncErrSymm_TeV", "nomWithNewFuncErrSymm_TeV", len(newbins) - 1, array('d', newbins)) newValueNewFuncErrDirected = ROOT.TH1D("nomWithNewFuncErrDirected_TeV", "nomWithNewFuncErrDirected_TeV", len(newbins) - 1, array('d', newbins)) for histnew,histold in [[newbasicdata,basicData],[newbasicBkgFrom4ParamFit,basicBkgFrom4ParamFit],\ [newresidualHist,residualHist],[newrelativeDiffHist,relativeDiffHist],[newsigOfDiffHist,sigOfDiffHist]] : for bin in range(histnew.GetNbinsX() + 2): histnew.SetBinContent(bin, histold.GetBinContent(bin)) histnew.SetBinError(bin, histold.GetBinError(bin)) # Significances for Todd ToddSignificancesHist = ROOT.TH1D("ToddSignificancesHist", "ToddSignificancesHist", 100, -5, 5) for bin in range(0, newresidualHist.GetNbinsX() + 1): if bin < firstBin: continue if bin > lastBin: continue residualValue = newresidualHist.GetBinContent(bin) #print residualValue ToddSignificancesHist.Fill(residualValue) myPainter.drawBasicHistogram(ToddSignificancesHist, -1, -1, "Residuals", "Entries", "{0}/ToddSignificancesHist".format(outPath)) # Search phase plots myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\ 'm_{jj} [TeV]','Events','Significance','{0}/figure1'.format(outPath),\ luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],True,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\ 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nologx'.format(outPath),\ luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],False,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\ 'm_{jj} [TeV]','Prescale-weighted events','Significance','{0}/figure1_nobump'.format(outPath),\ luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,bumpLowEdge,bumpHighEdge,[],True,False,[],True,bumpHunterPVal) myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\ 'm_{jj} [TeV]','Prescale-weighted events','Significance','{0}/figure1_nobump_nologx'.format(outPath),\ luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,bumpLowEdge,bumpHighEdge,[],False,False,[],True,bumpHunterPVal) myPainter.drawPseudoExperimentsWithObservedStat(logLikelihoodPseudoStatHist,float(logLOfFitToData),logLPVal,0,luminosity,13,\ 'logL statistic','Pseudo-exeperiments',"{0}/logLStatPlot".format(outPath)) myPainter.drawPseudoExperimentsWithObservedStat(chi2PseudoStatHist,float(chi2OfFitToData),chi2PVal,0,luminosity,13,\ "#chi^{2}",'Pseudo-exeperiments',"{0}/chi2StatPlot".format(outPath)) myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatHist,float(bumpHunterStatFitToData),bumpHunterPVal,0,luminosity,13,\ 'BumpHunter','Pseudo-exeperiments',"{0}/bumpHunterStatPlot".format(outPath)) myPainter.drawBumpHunterTomographyPlot( bumpHunterTomographyPlot, "{0}/bumpHunterTomographyPlot".format(outPath)) # Various significance plots myPainter.drawSignificanceHistAlone( newrelativeDiffHist, "m_{jj} [TeV]", "(D - B)/B", "{0}/significanceonlyplot".format(outPath)) myPainter.drawSignificanceHistAlone( newsigOfDiffHist, "m_{jj} [TeV]", "(D - B)/#sqrt{Derr^{2}+Berr^{2}}", "{0}/sigofdiffonlyplot".format(outPath)) # Now to make the one comparing uncertainties placeHolderNom = newbasicBkgFrom4ParamFit.Clone() placeHolderNom.SetName("placeHolderNom") nomPlusSymmFuncErr = newbasicBkgFrom4ParamFit.Clone() nomPlusSymmFuncErr.SetName("nomPlusNewFuncErr") nomMinusSymmFuncErr = newbasicBkgFrom4ParamFit.Clone() nomMinusSymmFuncErr.SetName("nomMinusNewFuncErr") for bin in range(nomPlusSymmFuncErr.GetNbinsX() + 2): nomPlusSymmFuncErr.SetBinContent( bin, newnomWithNewFuncErrSymm.GetBinContent(bin) + newnomWithNewFuncErrSymm.GetBinError(bin)) nomMinusSymmFuncErr.SetBinContent( bin, newnomWithNewFuncErrSymm.GetBinContent(bin) - newnomWithNewFuncErrSymm.GetBinError(bin)) myPainter.drawDataWithFitAsHistogram( newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]", "Events", ["Data", "Fit", "Fit uncertainty", "Function choice"], "{0}/compareFitQualityAndAlternateFit".format(outPath), True, [[newNomPlus1, newNomMinus1], [placeHolderNom, newAlternateBkg]], firstBin, lastBin + 2, True, True, True, False, False) myPainter.drawDataWithFitAsHistogram( newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]", "Events", ["Data", "Fit", "Function choice", "Alternate function"], "{0}/compareFitChoiceAndAlternateFit".format(outPath), True, [[nomPlusSymmFuncErr, nomMinusSymmFuncErr], [placeHolderNom, newAlternateBkg]], firstBin, lastBin + 2, True, True, True, False, False) myPainter.drawDataWithFitAsHistogram( newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]", "Events", ["Data", "Fit", "Fit uncertainty", "Function choice"], "{0}/compareFitQualtiyAndFitChoice".format(outPath), True, [[newNomPlus1, newNomMinus1], [nomPlusSymmFuncErr, nomMinusSymmFuncErr]], firstBin, lastBin + 2, True, True, True, False, False) myPainter.drawDataWithFitAsHistogram( newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]", "Events", ["Data", "Fit", "Statistical fit uncertainty", "Function choice"], "{0}/compareFitQualityAndFitChoice_Asymm".format(outPath), True, [[newNomPlus1, newNomMinus1], [placeHolderNom, newValueNewFuncErrDirected]], firstBin, lastBin + 2, True, True, True, False, False) # Overlay 3 and 4 parameter fit functions myPainter.drawDataWithFitAsHistogram( newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]", "Events", ["Data", "Fit", "Alternate function"], "{0}/compareFitChoices".format(outPath), True, [[placeHolderNom, newAlternateBkg]], firstBin, lastBin + 2, True, True, True, False, False) #print "RATI" #newfitfunctionratio = newAlternateBkg.Clone() #newfitfunctionratio.Add(newAlternateBkg,-1) #for bin in range(0,newAlternateBkg.GetNbinsX()+1) : # if newAlternateBkg.GetBinContent(bin) == 0 : # newfitfunctionratio.SetBinContent(bin,0) # else : # newfitfunctionratio.SetBinContent(bin,(newbasicBkgFrom4ParamFit.GetBinContent(bin)/newAlternateBkg.GetBinContent(bin))) #myPainter.drawBasicHistogram(newfitfunctionratio,firstBin,lastBin-5,"m_{jj} [TeV]","3 par/4par","{0}/compareDiffFitChoices".format(outPath)) # BROKEN myPainter.drawManyOverlaidHistograms([newbasicBkgFrom4ParamFit],["3 par"],"m_{jj} [TeV]","Events","CompareFitFunctions",firstBin,lastBin+2,0,1E6) # Make a ratio histogram for Sasha's plot. # altFitRatio = ROOT.TH1D("altFitRatio","altFitRatio",len(newbins)-1,array('d',newbins)) # for bin in range(0,altFitRatio.GetNbinsX()+1) : # if newbasicBkgFrom4ParamFit.GetBinContent(bin) == 0 : # altFitRatio.SetBinContent(bin,0) # else : # altFitRatio.SetBinContent(bin,(valueNewFuncErrDirected.GetBinContent(bin)-newbasicBkgFrom4ParamFit.GetBinContent(bin))/newbasicBkgFrom4ParamFit.GetBinContent(bin)) # Make a ratio histogram for paper plot. PlusNomRatio = ROOT.TH1D("PlusNomRatio", "PlusNomRatio", len(newbins) - 1, array('d', newbins)) for bin in range(0, PlusNomRatio.GetNbinsX() + 1): if newbasicBkgFrom4ParamFit.GetBinContent(bin) == 0: PlusNomRatio.SetBinContent(bin, 0) else: PlusNomRatio.SetBinContent( bin, (newNomPlus1.GetBinContent(bin) - newbasicBkgFrom4ParamFit.GetBinContent(bin)) / newbasicBkgFrom4ParamFit.GetBinContent(bin)) MinusNomRatio = ROOT.TH1D("MinusNomRatio", "MinusNomRatio", len(newbins) - 1, array('d', newbins)) for bin in range(0, MinusNomRatio.GetNbinsX() + 1): if newbasicBkgFrom4ParamFit.GetBinContent(bin) == 0: MinusNomRatio.SetBinContent(bin, 0) else: MinusNomRatio.SetBinContent( bin, (newNomMinus1.GetBinContent(bin) - newbasicBkgFrom4ParamFit.GetBinContent(bin)) / newbasicBkgFrom4ParamFit.GetBinContent(bin)) # myPainter.drawDataWithFitAsHistogramAndResidual(newbasicdata,newbasicBkgFrom4ParamFit,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatio".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin+2,True,True,True,False,False,True,False,True,bumpHunterPVal,True,fitRange[0],fitRange[1]) # changed from lastBin+2 to lastBin+18 to match FancyFigure # # myPainter.drawDataWithFitAsHistogramAndResidualPaper(newbasicdata,newbasicBkgFrom4ParamFit,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatioPaper".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin+2,True,True,True,False,False) # changed from lastBin+2 to lastBin+18 to match FancyFigure # # myPainter.drawMultipleFitsAndResiduals(newbasicdata,[newbasicBkgFrom4ParamFit,newValueNewFuncErrDirected],[altFitRatio],["Nominal fit","Func choice unc"],"m_{jj} [TeV]","Events",["(alt-nom)/nom"],"{0}/directedFuncChoiceVersusNominal_withRatio".format(outPath),luminosity,13,firstBin,lastBin+2) if doStatSearch: TomographyPlotWithStats = searchInputFile.Get( "TomographyPlotWithStats") bumpHunterStatsWSyst = searchInputFile.Get("bumpHunterStatsWSyst") bumpPValStat = bumpHunterStatsWSyst[0] bumpPValLow = bumpHunterStatsWSyst[1] bumpPValHigh = bumpHunterStatsWSyst[2] myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatsWSyst,3.20359,0.7241,0,luminosity,13,\ 'BumpHunter','Pseudo-experiments',"{0}/bumpHunterStatPlot_withUncertainties".format(outPath)) myPainter.drawBumpHunterTomographyPlot( TomographyPlotWithStats, "{0}/bumpHunterTomographyPlot_withStats".format(outPath)) print "with stats, bumpLowEdge, bumpHighEdge are", bumpPValLow, bumpPValHigh print "BumpHunter pvalue is", bumpPValStat searchInputFile.Close() print "Done."