Example #1
0
def gen_a_periodic_shift(N, T, L, M, pA, k = 5, interval = [10,101], seed = None, noise_sig = 0.1, L2 = None, periods = None, periods2 = None):
  """ Switches signal periods from one set of trends to another and back again
   after L2 steps 
   
   Tests for a group of signals momentarily breaking correlations.
   """

  if seed:
      print 'Setting seed to %i' % (seed) 
      npr.seed(seed)
  
  if periods is None:
    periods = []
    num_left = float(interval[1] - interval[0])
    num_needed = float(k)
    for i in xrange(interval[0], interval[1]+1):
      # probability of selection = (number needed)/(number left)
      p = num_needed / num_left
      if npr.rand() <= p:
        periods.append(i) 
        num_needed -= 1
      else:
        num_left -=1   
    
  if periods2 is None:
      periods2 = []
      num_left = float(interval[1] - interval[0])
      num_needed = float(k)
      for i in xrange(interval[0], interval[1]+1):
        # probability of selection = (number needed)/(number left)
        p = num_needed / num_left
        if npr.rand() <= p:
          periods2.append(i) 
          num_needed -= 1
        else:
          num_left -=1     

  # Seed already set at start of function 
  A, sins1 = sin_rand_combo(N, T, periods, noise_scale = noise_sig)
  B, sins2 = sin_rand_combo(N, T, periods2, noise_scale = noise_sig)

  # Anomaly will occur (and finish) Between time points 50 and T - 10 
  start_point = npr.randint(50, T - L - L2 - 10)

  # Select stream(s) to be anomalous
  if type(pA) == int:
    num_anom = pA
  elif pA < 1.0:
    num_anom = np.floor(pA * N)

  if num_anom > 1:
    anoms = []
    num_left = float(N)
    num_needed = float(num_anom)
    for i in xrange(N):
      # probability of selection = (number needed)/(number left)
      p = num_needed / num_left
      if npr.rand() <= p:
        anoms.append(i) 
        num_needed -= 1
        num_left -=1
      else:
        num_left -=1   
    A[start_point:start_point+L2,anoms] = B[start_point:start_point+L2,anoms]
  else:
    anoms = npr.randint(N)
    A[start_point:start_point+L2,anoms] = B[start_point:start_point+L2,anoms]


  ''' Ground Truth Table '''
  if anoms.__class__ == int:
    anoms = [anoms]
  
  gt_table = np.zeros(num_anom*2, dtype = [('start','i4'),('loc','i4'),('len','i4'),('mag','i4'),('type','a10')])
  count = 0
  for i, a in enumerate(anoms):   
    gt_table[i+count] = (start_point, a, 10, M, 'Break Trends')
    gt_table[i+count+1] = (start_point+L2, a, 10, M, 'Make Trends')
    count += 1

  output = dict(data = A, gt = gt_table, trends = sins1, trends2 = sins2, periods = periods, periods2 = periods2)
  return output
Example #2
0
def gen_a_peak_dip(N, T, L, M, pA, k = 5, interval = [10,121], seed = None, noise_sig = 0.1, L2 = None, periods = None, periods2 = None):
  """ Adds short peak or dip to data 
  
  interval used is (low (Inclusive), High (exclusive)] 
  
  """
  if seed:
    print 'Setting seed to %i' % (seed) 
    npr.seed(seed)

  if periods is None:
    periods = []
    num_left = float(interval[1] - interval[0])
    num_needed = float(k)
    for i in xrange(interval[0], interval[1]+1):
      # probability of selection = (number needed)/(number left)
      p = num_needed / num_left
      if npr.rand() <= p:
        periods.append(i) 
        num_needed -= 1
      else:
        num_left -=1     

  #if seed is not None:
    ## Code to make random sins combination 
    #A, sins = sin_rand_combo(N, T, periods, seed = seed, noise_scale = noise_sig)
  #else:
    ## Code to make random sins combination 

  # Seed already set at start of function 
  A, sins = sin_rand_combo(N, T, periods, noise_scale = noise_sig)

  # Anomaly will occur (and finish) Between time points 50 and T - 10 
  start_point = npr.randint(50, T - L - 10)

  # Code to make linear Anomalous trend 
  baseLine = 0

  # Randomly choose peak or dip 
  if npr.rand() < 0.5:
    anom_type = 'Peak'
    s0lin = Tseries(0)
    s0lin.makeSeries([1,3,4,1], [start_point, L/2, L/2, T - start_point - L], 
                   [baseLine, baseLine, baseLine + M, baseLine], 
                   gradient = float(M)/float(L/2), noise_type ='none')      
  else:
    anom_type = 'Dip'
    s0lin = Tseries(0)
    s0lin.makeSeries([1,4,3,1], [start_point, L/2, L/2, T - start_point - L], 
                     [baseLine, baseLine, baseLine - M, baseLine], 
                    gradient = float(M)/float(L/2), noise_type ='none')      

  # Select stream(s) to be anomalous
  if type(pA) == int:
    num_anom = pA
  elif pA < 1.0:
    num_anom = np.floor(pA * N)

  if num_anom > 1:
    anoms = []
    num_left = float(N)
    num_needed = float(num_anom)
    for i in xrange(N):
      # probability of selection = (number needed)/(number left)
      p = num_needed / num_left
      if npr.rand() <= p:
        anoms.append(i) 
        num_needed -= 1
        num_left -= 1
      else:
        num_left -= 1   
    A[:,anoms] = A[:,anoms] + np.atleast_2d(s0lin).T
  else:
    anoms = npr.randint(N)
    A[:,anoms] = A[:,anoms] + np.array(s0lin)

  ''' Grount truth Table '''
  if anoms.__class__ == int:
    anoms = [anoms]
  
  gt_table = np.zeros(num_anom, dtype = [('start','i4'),('loc','i4'),('len','i4'),('mag','i4'),('type','a10')])
  for i, a in enumerate(anoms):
    gt_table[i] = (start_point, a, L, M, anom_type)

  output = dict(data = A, gt = gt_table, trends = sins, periods = periods)

  return output
Example #3
0
def gen_a_grad_persist(N, T, L, M, pA, k = 5, interval = [10,101], seed = None, noise_sig = 0.1, L2 = None, periods = None, periods2 = None):
  """ Adds longer persisted anomaly. gradient up/down to it 
  and vice versa after L steps """

  if seed:
      print 'Setting seed to %i' % (seed) 
      npr.seed(seed)
  
  if periods is None:
    periods = []
    num_left = float(interval[1] - interval[0])
    num_needed = float(k)
    for i in xrange(interval[0], interval[1]+1):
      # probability of selection = (number needed)/(number left)
      p = num_needed / num_left
      if npr.rand() <= p:
        periods.append(i) 
        num_needed -= 1
      else:
        num_left -=1       

  # Seed already set at start of function 
  A, sins = sin_rand_combo(N, T, periods, noise_scale = noise_sig)

  # Anomaly will occur (and finish) Between time points 50 and T - 10 
  start_point = npr.randint(50, T - L - L2 - 10)

  # Code to make linear Anomalous trend 
  baseLine = 0

  # Randomly choose peak or dip 
  if npr.rand() < 0.5:
    anom_type = 'Grad Up--Down'
    s0lin = Tseries(0)
    s0lin.makeSeries([1,3,1,4,1], [start_point, L/2, L2, L/2, T - start_point - L - L2], 
                     [baseLine, baseLine, baseLine + M, baseLine + M, baseLine], 
                    gradient = float(M)/float(L/2), noise_type ='none')
  else:
    anom_type = 'Grad Down--Up'
    s0lin = Tseries(0)
    s0lin.makeSeries([1,4,1,3,1], [start_point, L/2, L2, L/2, T - start_point - L - L2], 
                     [baseLine, baseLine, baseLine - M, baseLine - M, baseLine], 
                    gradient = float(M)/float(L/2), noise_type ='none')      
    
  # Select stream(s) to be anomalous
  if type(pA) == int:
    num_anom = pA
  elif pA < 1.0:
    num_anom = np.floor(pA * N)

  if num_anom > 1:
    anoms = []
    num_left = float(N)
    num_needed = float(num_anom)
    for i in xrange(N):
      # probability of selection = (number needed)/(number left)
      p = num_needed / num_left
      if npr.rand() <= p:
        anoms.append(i) 
        num_needed -= 1
        num_left -=1
      else:
        num_left -=1   
    A[:,anoms] = A[:,anoms] + np.atleast_2d(s0lin).T
  else:
    anoms = npr.randint(N)
    A[:,anoms] = A[:,anoms] + np.array(s0lin)
  
  ''' Ground Truth Table '''
  if anoms.__class__ == int:
    anoms = [anoms]
  
  gt_table = np.zeros(num_anom*2, dtype = [('start','i4'),('loc','i4'),('len','i4'),('mag','i4'),('type','a10')])
  count = 0
  for i, a in enumerate(anoms):
    a1_type = anom_type[5:].split('--')[0]
    a2_type = anom_type[5:].split('--')[1]    
    gt_table[i+count] = (start_point, a, L, M, 'Grad ' + a1_type)
    gt_table[i+count+1] = (start_point+L2+(L/2.0), a, L, M, 'Grad ' + a2_type)
    count += 1

  output = dict(data = A, gt = gt_table, trends = sins, periods = periods)
  return output