def run(): for n in make_index_list(load_config()): base_dir = Path(str(n)).resolve() base_dir.mkdir(exist_ok=True) script = TrainRunScript(n, base_dir) with open(base_dir / 'finetune.sh', 'w') as f: f.write(str(script))
def run(): config = load_config() first_trial = 0 for n in range(config['pretrain']['trials']): base_dir = Path(str(n)).resolve() base_dir.mkdir(exist_ok=True) script = PretrainDataRunScript(base_dir, n, first_trial) with open(base_dir / 'data.sh', 'w') as f: f.write(str(script)) return first_trial
def run(): for n in make_index_list(load_config()): base_dir = Path(str(n)).resolve() base_dir.mkdir(exist_ok=True) main_script = PretrainRunScript(n, base_dir) worker_script = WorkerRunScript(n, base_dir) with open(base_dir / 'pretrain.sh', 'w') as f: f.write(str(main_script)) with open(base_dir / 'worker.sh', 'w') as f: f.write(str(worker_script))
def sub(first_trial): config = load_config() indices = [n for n in range(config['pretrain']['trials'])] if first_trial is not None: indices = [n for n in indices if n != first_trial] sub_script = DataSubScript([first_trial]) with open('first_sub.sh', 'w') as f: f.write(str(sub_script)) sub_script = DataSubScript(indices) with open('sub.sh', 'w') as f: f.write(str(sub_script))
def valid_rescore_errant_results(dataset): config = load_config() result_list = [] for l in config['rescore']['lambda']: base_dir = make_ensemble_base_dir(dataset, 'valid') lmil = int(l * 1000) output = base_dir / 'result.{}.cat2'.format(lmil) if output.exists(): result = ErrantCat2Result(None, None, output, l = l) result_list.append(result) return result_list
def make_rescore_result_list(result_class, dataset, stage): config = load_config() result_list = [] for l in config['rescore']['lambda']: base_dir = make_ensemble_base_dir(dataset, stage) lmil = int(l * 1000) output = base_dir / 'result.{}.res'.format(lmil) if output.exists(): result = result_class(None, None, output, l=l) result_list.append(result) return result_list
def __init__(self, dataset, stage): self.config = load_config() self.dataset = dataset self.stage = stage self.make()
def __init__(self): super().__init__() self.config = load_config() self.header() self.make()