Example #1
0
def dict_to_dataset(
    data,
    library=None,
    coords=None,
    dims=None,
    attrs=None,
    default_dims=None,
    skip_event_dims=None,
    index_origin=None,
):
    """Temporal workaround for dict_to_dataset.

    Once ArviZ>0.11.2 release is available, only two changes are needed for everything to work.
    1) this should be deleted, 2) dict_to_dataset should be imported as is from arviz, no underscore,
    also remove unnecessary imports
    """
    if default_dims is None:
        return _dict_to_dataset(data,
                                library=library,
                                coords=coords,
                                dims=dims,
                                skip_event_dims=skip_event_dims)
    else:
        out_data = {}
        for name, vals in data.items():
            vals = np.atleast_1d(vals)
            val_dims = dims.get(name)
            val_dims, coords = generate_dims_coords(vals.shape,
                                                    name,
                                                    dims=val_dims,
                                                    coords=coords)
            coords = {
                key: xr.IndexVariable((key, ), data=coords[key])
                for key in val_dims
            }
            out_data[name] = xr.DataArray(vals, dims=val_dims, coords=coords)
        return xr.Dataset(data_vars=out_data,
                          attrs=make_attrs(library=library))
Example #2
0
def sample_numpyro_nuts(
    draws: int = 1000,
    tune: int = 1000,
    chains: int = 4,
    target_accept: float = 0.8,
    random_seed: int = None,
    initvals: Optional[Union[StartDict, Sequence[Optional[StartDict]]]] = None,
    model: Optional[Model] = None,
    var_names=None,
    progress_bar: bool = True,
    keep_untransformed: bool = False,
    chain_method: str = "parallel",
    idata_kwargs: Optional[Dict] = None,
    nuts_kwargs: Optional[Dict] = None,
):
    """
    Draw samples from the posterior using the NUTS method from the ``numpyro`` library.

    Parameters
    ----------
    draws : int, default 1000
        The number of samples to draw. The number of tuned samples are discarded by default.
    tune : int, default 1000
        Number of iterations to tune. Samplers adjust the step sizes, scalings or
        similar during tuning. Tuning samples will be drawn in addition to the number specified in
        the ``draws`` argument.
    chains : int, default 4
        The number of chains to sample.
    target_accept : float in [0, 1].
        The step size is tuned such that we approximate this acceptance rate. Higher values like
        0.9 or 0.95 often work better for problematic posteriors.
    random_seed : int, default 10
        Random seed used by the sampling steps.
    model : Model, optional
        Model to sample from. The model needs to have free random variables. When inside a ``with`` model
        context, it defaults to that model, otherwise the model must be passed explicitly.
    var_names : iterable of str, optional
        Names of variables for which to compute the posterior samples. Defaults to all variables in the posterior
    progress_bar : bool, default True
        Whether or not to display a progress bar in the command line. The bar shows the percentage
        of completion, the sampling speed in samples per second (SPS), and the estimated remaining
        time until completion ("expected time of arrival"; ETA).
    keep_untransformed : bool, default False
        Include untransformed variables in the posterior samples. Defaults to False.
    chain_method : str, default "parallel"
        Specify how samples should be drawn. The choices include "sequential", "parallel", and "vectorized".
    idata_kwargs : dict, optional
        Keyword arguments for :func:`arviz.from_dict`. It also accepts a boolean as value
        for the ``log_likelihood`` key to indicate that the pointwise log likelihood should
        not be included in the returned object.

    Returns
    -------
    InferenceData
        ArviZ ``InferenceData`` object that contains the posterior samples, together with their respective sample stats and
        pointwise log likeihood values (unless skipped with ``idata_kwargs``).
    """

    import numpyro

    from numpyro.infer import MCMC, NUTS

    model = modelcontext(model)

    if var_names is None:
        var_names = model.unobserved_value_vars

    vars_to_sample = list(
        get_default_varnames(var_names,
                             include_transformed=keep_untransformed))

    coords = {
        cname: np.array(cvals) if isinstance(cvals, tuple) else cvals
        for cname, cvals in model.coords.items() if cvals is not None
    }

    if hasattr(model, "RV_dims"):
        dims = {
            var_name: [dim for dim in dims if dim is not None]
            for var_name, dims in model.RV_dims.items()
        }
    else:
        dims = {}

    if random_seed is None:
        random_seed = model.rng_seeder.randint(2**30, dtype=np.int64)

    tic1 = datetime.now()
    print("Compiling...", file=sys.stdout)

    init_params = _get_batched_jittered_initial_points(
        model=model,
        chains=chains,
        initvals=initvals,
        random_seed=random_seed,
    )

    logp_fn = get_jaxified_logp(model, negative_logp=False)

    if nuts_kwargs is None:
        nuts_kwargs = {}
    nuts_kernel = NUTS(
        potential_fn=logp_fn,
        target_accept_prob=target_accept,
        adapt_step_size=True,
        adapt_mass_matrix=True,
        dense_mass=False,
        **nuts_kwargs,
    )

    pmap_numpyro = MCMC(
        nuts_kernel,
        num_warmup=tune,
        num_samples=draws,
        num_chains=chains,
        postprocess_fn=None,
        chain_method=chain_method,
        progress_bar=progress_bar,
    )

    tic2 = datetime.now()
    print("Compilation time = ", tic2 - tic1, file=sys.stdout)

    print("Sampling...", file=sys.stdout)

    map_seed = jax.random.PRNGKey(random_seed)
    if chains > 1:
        map_seed = jax.random.split(map_seed, chains)

    pmap_numpyro.run(
        map_seed,
        init_params=init_params,
        extra_fields=(
            "num_steps",
            "potential_energy",
            "energy",
            "adapt_state.step_size",
            "accept_prob",
            "diverging",
        ),
    )

    raw_mcmc_samples = pmap_numpyro.get_samples(group_by_chain=True)

    tic3 = datetime.now()
    print("Sampling time = ", tic3 - tic2, file=sys.stdout)

    print("Transforming variables...", file=sys.stdout)
    mcmc_samples = {}
    for v in vars_to_sample:
        jax_fn = get_jaxified_graph(inputs=model.value_vars, outputs=[v])
        result = jax.vmap(jax.vmap(jax_fn))(*raw_mcmc_samples)[0]
        mcmc_samples[v.name] = result

    tic4 = datetime.now()
    print("Transformation time = ", tic4 - tic3, file=sys.stdout)

    if idata_kwargs is None:
        idata_kwargs = {}
    else:
        idata_kwargs = idata_kwargs.copy()

    if idata_kwargs.pop("log_likelihood", True):
        log_likelihood = _get_log_likelihood(model, raw_mcmc_samples)
    else:
        log_likelihood = None

    attrs = {
        "sampling_time": (tic3 - tic2).total_seconds(),
    }

    posterior = mcmc_samples
    az_trace = az.from_dict(
        posterior=posterior,
        log_likelihood=log_likelihood,
        observed_data=find_observations(model),
        sample_stats=_sample_stats_to_xarray(pmap_numpyro),
        coords=coords,
        dims=dims,
        attrs=make_attrs(attrs, library=numpyro),
        **idata_kwargs,
    )

    return az_trace
Example #3
0
def sample_blackjax_nuts(
    draws=1000,
    tune=1000,
    chains=4,
    target_accept=0.8,
    random_seed=10,
    initvals=None,
    model=None,
    var_names=None,
    keep_untransformed=False,
    chain_method="parallel",
    idata_kwargs=None,
):
    """
    Draw samples from the posterior using the NUTS method from the ``blackjax`` library.

    Parameters
    ----------
    draws : int, default 1000
        The number of samples to draw. The number of tuned samples are discarded by default.
    tune : int, default 1000
        Number of iterations to tune. Samplers adjust the step sizes, scalings or
        similar during tuning. Tuning samples will be drawn in addition to the number specified in
        the ``draws`` argument.
    chains : int, default 4
        The number of chains to sample.
    target_accept : float in [0, 1].
        The step size is tuned such that we approximate this acceptance rate. Higher values like
        0.9 or 0.95 often work better for problematic posteriors.
    random_seed : int, default 10
        Random seed used by the sampling steps.
    model : Model, optional
        Model to sample from. The model needs to have free random variables. When inside a ``with`` model
        context, it defaults to that model, otherwise the model must be passed explicitly.
    var_names : iterable of str, optional
        Names of variables for which to compute the posterior samples. Defaults to all variables in the posterior
    keep_untransformed : bool, default False
        Include untransformed variables in the posterior samples. Defaults to False.
    chain_method : str, default "parallel"
        Specify how samples should be drawn. The choices include "parallel", and "vectorized".
    idata_kwargs : dict, optional
        Keyword arguments for :func:`arviz.from_dict`. It also accepts a boolean as value
        for the ``log_likelihood`` key to indicate that the pointwise log likelihood should
        not be included in the returned object.

    Returns
    -------
    InferenceData
        ArviZ ``InferenceData`` object that contains the posterior samples, together with their respective sample stats and
        pointwise log likeihood values (unless skipped with ``idata_kwargs``).
    """
    import blackjax

    model = modelcontext(model)

    if var_names is None:
        var_names = model.unobserved_value_vars

    vars_to_sample = list(
        get_default_varnames(var_names,
                             include_transformed=keep_untransformed))

    coords = {
        cname: np.array(cvals) if isinstance(cvals, tuple) else cvals
        for cname, cvals in model.coords.items() if cvals is not None
    }

    if hasattr(model, "RV_dims"):
        dims = {
            var_name: [dim for dim in dims if dim is not None]
            for var_name, dims in model.RV_dims.items()
        }
    else:
        dims = {}

    tic1 = datetime.now()
    print("Compiling...", file=sys.stdout)

    init_params = _get_batched_jittered_initial_points(
        model=model,
        chains=chains,
        initvals=initvals,
        random_seed=random_seed,
    )

    if chains == 1:
        init_params = [np.stack(init_params)]
        init_params = [
            np.stack(init_state) for init_state in zip(*init_params)
        ]

    logprob_fn = get_jaxified_logp(model)

    seed = jax.random.PRNGKey(random_seed)
    keys = jax.random.split(seed, chains)

    get_posterior_samples = partial(
        _blackjax_inference_loop,
        logprob_fn=logprob_fn,
        tune=tune,
        draws=draws,
        target_accept=target_accept,
    )

    tic2 = datetime.now()
    print("Compilation time = ", tic2 - tic1, file=sys.stdout)

    print("Sampling...", file=sys.stdout)

    # Adapted from numpyro
    if chain_method == "parallel":
        map_fn = jax.pmap
    elif chain_method == "vectorized":
        map_fn = jax.vmap
    else:
        raise ValueError(
            "Only supporting the following methods to draw chains:"
            ' "parallel" or "vectorized"')

    states, _ = map_fn(get_posterior_samples)(keys, init_params)
    raw_mcmc_samples = states.position

    tic3 = datetime.now()
    print("Sampling time = ", tic3 - tic2, file=sys.stdout)

    print("Transforming variables...", file=sys.stdout)
    mcmc_samples = {}
    for v in vars_to_sample:
        jax_fn = get_jaxified_graph(inputs=model.value_vars, outputs=[v])
        result = jax.vmap(jax.vmap(jax_fn))(*raw_mcmc_samples)[0]
        mcmc_samples[v.name] = result

    tic4 = datetime.now()
    print("Transformation time = ", tic4 - tic3, file=sys.stdout)

    if idata_kwargs is None:
        idata_kwargs = {}
    else:
        idata_kwargs = idata_kwargs.copy()

    if idata_kwargs.pop("log_likelihood", True):
        log_likelihood = _get_log_likelihood(model, raw_mcmc_samples)
    else:
        log_likelihood = None

    attrs = {
        "sampling_time": (tic3 - tic2).total_seconds(),
    }

    posterior = mcmc_samples
    az_trace = az.from_dict(
        posterior=posterior,
        log_likelihood=log_likelihood,
        observed_data=find_observations(model),
        coords=coords,
        dims=dims,
        attrs=make_attrs(attrs, library=blackjax),
        **idata_kwargs,
    )

    return az_trace