Example #1
0
def make_hcp_0001_cell(size=(1, 1, 1), symbols=['Ni'], pbc=(1, 1, 1)):
    direction_x = [2, -1, -1, 0]
    direction_y = [0, 1, -1, 0]
    direction_z = [0, 0, 0, 1]

    directions = [direction_x, direction_y, direction_z]
    atoms = None
    try:
        atoms = HexagonalClosedPacked(
            directions=[direction_x, direction_y, direction_z],
            size=size,
            symbol=symbols[0],
            pbc=pbc)
    except ValueError as e:
        if str(
                e
        ) == 'Cannot guess the hcp lattice constant of an element with crystal structure fcc.':
            r = get_atomic_radius(symbol=symbols[0])
            _lattice_constants = {}
            _lattice_constants['a'] = r
            _lattice_constants['c/a'] = 1.663

            atoms = HexagonalClosedPacked(\
                    directions=directions,
                    size=size,
                    symbol=symbols[0],
                    pbc=pbc,
                    latticeconstant=_lattice_constants)
        else:
            raise
    return atoms
    def EfccEhcpCalculator(self, EMT, PARAMETERS):
        # Return 0 is used when the method is not desired to be used
        # return 0
        """ This method uses the EMT calculator to calculate and return the difference in energy between a system of 
            atoms placed in the HCP and FCC structure. """
        # The atoms objects are created using the input size and element and the energy calculator
        # is set to the EMT calculator
        # The Lattice Constants, a,c, for the HCP lattice is here given by the nearest neighbor distance of
        # the system in the FCC crystal structure, a = dnn, and the ideal relation between a and
        # c: a/c = sqrt(8/3) => c = dnn / sqrt(8/3)
        a = beta * PARAMETERS[self.Element][1] * Bohr
        c = a * numpy.sqrt(8. / 3.)

        # The HCP crystal is created, the size of the crystal is defined as 5,5,5, any smaller crystal will result in
        # Neighborlist errors.
        atoms1 = HexagonalClosedPacked(size=(5, 5, 5),
                                       directions=[[2, -1, -1,
                                                    0], [0, 1, -1, 0],
                                                   [0, 0, 0, 1]],
                                       symbol=self.Element,
                                       latticeconstant={
                                           'a': a,
                                           'c': c
                                       })
        atoms1.set_calculator(EMT)

        # The FCC crystal is created
        atoms2 = FaceCenteredCubic(size=(self.Size, self.Size, self.Size),
                                   symbol=self.Element)
        atoms2.set_calculator(EMT)

        # The energy difference pr atom is calculated and returned
        return atoms1.get_potential_energy() / len(
            atoms1) - atoms2.get_potential_energy() / len(atoms2)
def test_lattice_lindep():
    from ase.lattice.cubic import FaceCenteredCubic
    from ase.lattice.hexagonal import HexagonalClosedPacked
    from ase.test import must_raise

    with must_raise(ValueError):
        # The Miller indices of the surfaces are linearly dependent
        atoms = FaceCenteredCubic(symbol='Cu',
                                  miller=[[1, 1, 0], [1, 1, 0], [0, 0, 1]])

    # This one should be OK:
    atoms = FaceCenteredCubic(symbol='Cu',
                              miller=[[1, 1, 0], [0, 1, 0], [0, 0, 1]])
    print(atoms.get_cell())

    with must_raise(ValueError):
        # The directions spanning the unit cell are linearly dependent
        atoms = FaceCenteredCubic(symbol='Cu',
                                  directions=[[1, 1, 0], [1, 1, 0], [0, 0, 1]])

    with must_raise(ValueError):
        # The directions spanning the unit cell are linearly dependent
        atoms = FaceCenteredCubic(symbol='Cu',
                                  directions=[[1, 1, 0], [1, 0, 0], [0, 1, 0]])

    # This one should be OK:
    atoms = FaceCenteredCubic(symbol='Cu',
                              directions=[[1, 1, 0], [0, 1, 0], [0, 0, 1]])
    print(atoms.get_cell())

    with must_raise((ValueError, NotImplementedError)):
        # The Miller indices of the surfaces are linearly dependent
        atoms = HexagonalClosedPacked(symbol='Mg',
                                      miller=[[1, -1, 0, 0], [1, 0, -1, 0],
                                              [0, 1, -1, 0]])

    # This one should be OK
    #
    # It is not!  The miller argument is broken in hexagonal crystals!
    #
    # atoms = HexagonalClosedPacked(symbol='Mg',
    #                               miller=[[1, -1, 0, 0],
    #                                       [1, 0, -1, 0],
    #                                       [0, 0, 0, 1]])
    # print(atoms.get_cell())

    with must_raise(ValueError):
        # The directions spanning the unit cell are linearly dependent
        atoms = HexagonalClosedPacked(symbol='Mg',
                                      directions=[[1, -1, 0, 0], [1, 0, -1, 0],
                                                  [0, 1, -1, 0]])

    # This one should be OK
    atoms = HexagonalClosedPacked(symbol='Mg',
                                  directions=[[1, -1, 0, 0], [1, 0, -1, 0],
                                              [0, 0, 0, 1]])
    print(atoms.get_cell())
Example #4
0
def main():
	for x in fccs+bccs+hcps+diamonds+rocksalts+zincblendes+cscls:
		f = x in fccs
		b = x in bccs
		h = x in hcps
		d = x in diamonds
		r = x in rocksalts
		z = x in zincblendes
		c = x in cscls
		
		try: 
			if   f: a = FaceCenteredCubic(x[0]).get_cell()[0][0]/2
			elif b: a = BodyCenteredCubic(x[0]).get_cell()[0][0]/2
			elif d: a = Diamond(x[0]).get_cell()[0][0]/2
			elif h: 
					cell = HexagonalClosedPacked(x[0]).get_cell()
					a,c = cell[0][0],cell[2][2]

			elif r | z | c: a = dataLookup(x[0])
			else: raise NotImplementedError

		except ValueError: 
			a = sum([radDict[e] for e in elems])/len(elems)
			print "Had to guess lattice constant of "+x[0]

		if   f: name,struc,pos,cell,n = '-fcc',       'fcc',        [[0,0,0]],                  [[0,a,a],[a,0,a],[a,a,0]],   1
		elif b: name,struc,pos,cell,n = '-bcc',       'bcc',        [[0,0,0]],                  [[a,a,-a],[-a,a,a],[a,-a,a]],1
		elif h: name,struc,pos,cell,n = '-hcp',       'hexagonal',  [[0,0,0],[2./3,1./3,1./2]], [a,a,c,90,90,120],           2
		elif d: name,struc,pos,cell,n = '-diamond',   'diamond',    [[0,0,0],[0.25,0.25,0.25]], [[0,a,a],[a,0,a],[a,a,0]],   2
		elif z: name,struc,pos,cell,n = '-zincblende','zincblende', [[0,0,0],[0.25,0.25,0.25]], [[0,a,a],[a,0,a],[a,a,0]],   1
		elif r: name,struc,pos,cell,n = '-rocksalt',  'rocksalt',   [[0,0,0],[0.5,0.5,0.5]],    [[0,a,a],[a,0,a],[a,a,0]],   1
		elif c: name,struc,pos,cell,n = '-cscl',      'cubic',      [[0,0,0],[0.5,0.5,0.5]],    [a,a,a,90,90,90],            1

		mag     = magLookup(x[0])
		elems 	= parseChemicalFormula(x[0]).keys()*n
		magmoms = [magmomInit if e in magElems else 0 for e in elems] 

		atoms = Atoms(elems,scaled_positions=pos,cell=cell,pbc=[1,1,1],magmoms=magmoms,calculator=EMT())
		
		info = 	{'name': 		x[0]+name
				,'relaxed': 	False
				,'emt': 		atoms.get_potential_energy()/len(elems)	#normalized to per-atom basis
				,'comments':	'Autogenerated by createTrajs'
				,'kind': 		'bulk' # vs surface/molecules
				### Stuff for bulk
				,'structure': 	struc
				### Stuff for surfaces
				,'parent': 		None 
				,'sites': 		None
				,'facet': 		None
				,'xy': 			None
				,'layers': 		None
				,'constrained': None
				,'symmetric': 	None
				,'vacuum': 		None
				,'adsorbates':	None}

		db.write(atoms,key_value_pairs=info)
Example #5
0
    def test_CuZr(self):
        # This is a test for the potential published in:
        # Mendelev, Sordelet, Kramer, J. Appl. Phys. 102, 043501 (2007)
        a = FaceCenteredCubic('Cu', size=[2, 2, 2])
        calc = EAM('CuZr_mm.eam.fs', kind='eam/fs')
        a.set_calculator(calc)
        FIRE(StrainFilter(a, mask=[1, 1, 1, 0, 0, 0]),
             logfile=None).run(fmax=0.001)
        a_Cu = a.cell.diagonal().mean() / 2
        #print('a_Cu (3.639) = ', a_Cu)
        self.assertAlmostEqual(a_Cu, 3.639, 3)

        a = HexagonalClosedPacked('Zr', size=[2, 2, 2])
        a.set_calculator(calc)
        FIRE(StrainFilter(a, mask=[1, 1, 1, 0, 0, 0]),
             logfile=None).run(fmax=0.001)
        a, b, c = a.cell / 2
        #print('a_Zr (3.220) = ', norm(a), norm(b))
        #print('c_Zr (5.215) = ', norm(c))
        self.assertAlmostEqual(norm(a), 3.220, 3)
        self.assertAlmostEqual(norm(b), 3.220, 3)
        self.assertAlmostEqual(norm(c), 5.215, 3)

        # CuZr3
        a = L1_2(['Cu', 'Zr'], size=[2, 2, 2], latticeconstant=4.0)
        a.set_calculator(calc)
        FIRE(UnitCellFilter(a, mask=[1, 1, 1, 0, 0, 0]),
             logfile=None).run(fmax=0.001)
        self.assertAlmostEqual(a.cell.diagonal().mean() / 2, 4.324, 3)

        # Cu3Zr
        a = L1_2(['Zr', 'Cu'], size=[2, 2, 2], latticeconstant=4.0)
        a.set_calculator(calc)
        FIRE(UnitCellFilter(a, mask=[1, 1, 1, 0, 0, 0]),
             logfile=None).run(fmax=0.001)
        self.assertAlmostEqual(a.cell.diagonal().mean() / 2, 3.936, 3)

        # CuZr
        a = B2(['Zr', 'Cu'], size=[2, 2, 2], latticeconstant=3.3)
        a.set_calculator(calc)
        FIRE(UnitCellFilter(a, mask=[1, 1, 1, 0, 0, 0]),
             logfile=None).run(fmax=0.001)
        self.assertAlmostEqual(a.cell.diagonal().mean() / 2, 3.237, 3)
for b in bccs:
	try:                a = BodyCenteredCubic(b[0]).get_cell()[0][0]/2
	except ValueError:	a = radDict[b[0]]; print "Should look up lattice constant of "+b[0]
	name = root+b[0]+'-bcc.traj'
	mag  = magLookup(b[0])
	info = {'name':b[0]+'-bcc','bravais':'cubic','mag':mag,'comments':'Autogenerated by createTrajs'}
	if name not in ds:
		io.write(name,Atoms(b[0],scaled_positions=[[0,0,0]],cell=[[a,a,-a],[-a,a,a],[a,-a,a]],pbc=[1,1,1]
			,magmoms=[3 if e in magElems else 0 for e in b[0]],info=info))
#####################################################################
#####################################################################

for h in hcps:
	try:              	
		cell = HexagonalClosedPacked(h[0]).get_cell()
		a,c = cell[0][0],cell[2][2]
	except ValueError:	
		a = radDict[h[0]]
		c = a*1.7
	name = root+h[0]+'-hcp.traj'
	mag  = magLookup(h[0])
	info = {'name':h[0]+'-hcp','bravais':'hexagonal','mag':mag,'comments':'Autogenerated by createTrajs'}
	if name not in ds:
		io.write(name,Atoms([h[0]]*2,scaled_positions=[[0,0,0],[2./3,1./3,1./2]],cell=[a,a,c,90,90,120],pbc=[1,1,1]
			magmoms=[3 if e in magElems else 0 for e in h[0]],info=info))
#####################################################################
#####################################################################

for d in diamonds:
	try:               a = Diamond(d[0]).get_cell()[0][0]*(2**(-0.5))
Example #7
0
                              directions=[[1, 1, 0], [1, 1, 0], [0, 0, 1]])

with must_raise(ValueError):
    # The directions spanning the unit cell are linearly dependent
    atoms = FaceCenteredCubic(symbol='Cu',
                              directions=[[1, 1, 0], [1, 0, 0], [0, 1, 0]])

# This one should be OK:
atoms = FaceCenteredCubic(symbol='Cu',
                          directions=[[1, 1, 0], [0, 1, 0], [0, 0, 1]])
print(atoms.get_cell())

with must_raise((ValueError, NotImplementedError)):
    # The Miller indices of the surfaces are linearly dependent
    atoms = HexagonalClosedPacked(symbol='Mg',
                                  miller=[[1, -1, 0, 0], [1, 0, -1, 0],
                                          [0, 1, -1, 0]])

# This one should be OK
#
# It is not!  The miller argument is broken in hexagonal crystals!
#
# atoms = HexagonalClosedPacked(symbol='Mg',
#                               miller=[[1, -1, 0, 0],
#                                       [1, 0, -1, 0],
#                                       [0, 0, 0, 1]])
# print(atoms.get_cell())

with must_raise(ValueError):
    # The directions spanning the unit cell are linearly dependent
    atoms = HexagonalClosedPacked(symbol='Mg',
Example #8
0
from ase.lattice.hexagonal import HexagonalClosedPacked
from vasp import Vasp
import matplotlib.pyplot as plt
atoms = HexagonalClosedPacked(symbol='Ru',
                              latticeconstant={'a': 2.7,
                                               'c/a': 1.584})
a_list = [2.5, 2.6, 2.7, 2.8, 2.9]
covera_list = [1.4, 1.5, 1.6, 1.7, 1.8]
for a in a_list:
    energies = []
    for covera in covera_list:
        atoms = HexagonalClosedPacked(symbol='Ru',
                              latticeconstant={'a': a,
                                               'c/a': covera})
        wd = 'bulk/Ru/{0:1.2f}-{1:1.2f}'.format(a, covera)
        calc = Vasp(wd,
                    xc='PBE',
                    # the c-axis is longer than the a-axis, so we use
                    # fewer kpoints.
                    kpts=[6, 6, 4],
                    encut=350,
                    atoms=atoms)
        energies.append(atoms.get_potential_energy())
    if not None in energies:
        plt.plot(covera_list, energies, label=r'a={0} $\AA$'.format(a))
plt.xlabel('$c/a$')
plt.ylabel('Energy (eV)')
plt.legend()
plt.savefig('images/Ru-covera-scan.png')
Example #9
0
    def get_structure(self, name, elements, a=None, c=None, l=None):
        # Check number of elements
        if name[:3] in ['fcc', 'hcp']:
            if len(elements) != 1:
                raise ValueError("Tuple of elements must be of length one")
        if name[:3] in ['l12', 'l10'] or name[:2] == 'B2':
            if len(elements) != 2:
                raise ValueError("Tuple of elements must be of length two")

        # Get lattice constants
        if a is None:
            if name[:2] == 'B2':
                a = self.get_lattice_constant_a(name[:2], elements)
            elif name[:3] in ['fcc', 'hcp', 'bcc', 'l12', 'l10']:
                a = self.get_lattice_constant_a(name[:3], elements)

        if c is None:
            if name[:3] in ['hcp', 'l10']:
                c = self.get_lattice_constant_c(name[:3], elements)

        # Get size
        if name in ['fcc', 'hcp', 'bcc', 'l12', 'l10', 'B2']:
            size = self.properties[name + '_size']
        elif name in ['fcc100', 'fcc111', 'hcp0001']:
            size = self.properties[name + '_size'][:2] + (l, )

        # Make structure
        if name == 'fcc':
            atoms = FaceCenteredCubic(symbol=elements[0],
                                      size=size,
                                      latticeconstant=a)
        elif name == 'hcp':
            atoms = HexagonalClosedPacked(symbol=elements[0],
                                          size=size,
                                          directions=[[2, -1, -1, 0],
                                                      [0, 1, -1, 0],
                                                      [0, 0, 0, 1]],
                                          latticeconstant=(a, c))
        elif name == 'bcc':
            atoms = BodyCenteredCubic(symbol=elements[0],
                                      size=size,
                                      latticeconstant=a)
        elif name == 'B2':
            atoms = B2(symbol=elements, size=size, latticeconstant=a)
        elif name == 'l12':
            atoms = L1_2(symbol=elements, size=size, latticeconstant=a)
        elif name == 'l10':
            atoms = L1_0(symbol=elements, size=size, latticeconstant=(a, c))
        elif name == 'fcc100':
            atoms = fcc100(symbol=elements[0], size=size, a=a, vacuum=10.0)
        elif name == 'fcc111':
            atoms = fcc111(symbol=elements[0],
                           size=size,
                           a=a,
                           vacuum=10.0,
                           orthogonal=True)
        elif name == 'hcp0001':
            atoms = hcp0001(symbol=elements[0],
                            size=size,
                            a=a,
                            c=c,
                            vacuum=10.0,
                            orthogonal=True)
        elif name == 'hcp1010A':
            raise ValueError("Structure '%s' not supported" % (name, ))
            atoms = None
        elif name == 'hcp1010B':
            raise ValueError("Structure '%s' not supported" % (name, ))
            atoms = None
        elif name == 'l12100':
            n = (l + 1) / 2
            atoms = L1_2(symbol=elements, size=(8, 8, n), latticeconstant=a)
            atoms.set_pbc([True, True, False])
            # Remove layers
            atoms = atoms[atoms.get_positions()[:, 2] > 0.1 * a]
            # Set vacuum
            atoms.center(axis=2, vacuum=10.0)
        elif name == 'l12111':
            if l % 3 == 0:
                n = l / 3
                c = 0
            else:
                n = l / 3 + 1
                c = 3 - l % 3
            atoms = L1_2(
                symbol=elements,
                size=(8, 4, n),
                #directions=[[1,-1,0],[1,0,-1],[1,1,1]], latticeconstant=a)
                directions=[[1, -1, 0], [1, 1, -2], [1, 1, 1]],
                latticeconstant=a)
            atoms.set_pbc([True, True, False])
            # Wrap positions
            scpos = atoms.get_scaled_positions()
            scpos[scpos > (1.0 - 1e-12)] = 0.0
            atoms.set_scaled_positions(scpos)
            # Remove layers
            if c > 0:
                atoms = atoms[atoms.get_positions()[:, 2] > (c - 0.5) * a /
                              np.sqrt(3.0)]
            # Set vacuum
            atoms.center(axis=2, vacuum=10.0)
        else:
            raise ValueError("Structure '%s' not supported" % (name, ))
        return atoms
def test_hcp():
    atoms = HexagonalClosedPacked(symbol='Mg',
                                  directions=[[1, -1, 0, 0], [1, 0, -1, 0],
                                              [0, 0, 0, 1]])
    print(atoms.get_cell())
def test_hcp_cell_linearly_dependent():
    with pytest.raises(ValueError):
        # The directions spanning the unit cell are linearly dependent
        HexagonalClosedPacked(symbol='Mg',
                              directions=[[1, -1, 0, 0], [1, 0, -1, 0],
                                          [0, 1, -1, 0]])
def test_hcp_miller_lienarly_dependent():
    with pytest.raises((ValueError, NotImplementedError)):
        # The Miller indices of the surfaces are linearly dependent
        HexagonalClosedPacked(symbol='Mg',
                              miller=[[1, -1, 0, 0], [1, 0, -1, 0],
                                      [0, 1, -1, 0]])
Example #13
0
a = Triclinic(directions=[[2, 1, 0], [-2, 3, 0], [0, 1, 4]],
              size=(3, 3, 3),
              symbol="Cu",
              latticeconstant=(3.61, a0, a0, 60, 45, 45))
testFCC(a, 32 * 3 * 3 * 3, "Triclinic/FCC 3")

a = BaseCenteredMonoclinic(directions=[[2, 1, 0], [-2, 3, 0], [0, 1, 4]],
                           size=(3, 3, 3),
                           symbol="Cu",
                           latticeconstant=(3.61, 3.61, a0, 45))
testFCC(a, 64 * 3 * 3 * 3, "Monoclinic/FCC")

a0 = 3.15 * sqrt(3) / 2
a = Triclinic(directions=[[2, 1, 0], [-2, 3, 0], [0, 1, 4]],
              size=(3, 3, 3),
              symbol="Mo",
              latticeconstant=(3.15, 3.15, a0, 54.736, 54.736, 90))
testBCC(a, 32 * 3 * 3 * 3, "Triclinic/BCC")

a = HexagonalClosedPacked(directions=[[2, -1, -1, 0], [0, 1, -1, 0],
                                      [0, 0, 0, 1]],
                          size=(10, 5, 5),
                          symbol="Cu",
                          latticeconstant={
                              'a': 3.61 / sqrt(2),
                              'c/a': 2 * sqrt(2) / sqrt(3)
                          })
testHCP(a, 1000, "HCP 1")

ReportTest.Summary()
Example #14
0
from ase.lattice.hexagonal import HexagonalClosedPacked
from vasp import Vasp
import matplotlib.pyplot as plt
atoms = HexagonalClosedPacked(symbol='Ru',
                              latticeconstant={
                                  'a': 2.7,
                                  'c/a': 1.584
                              })
a_list = [2.5, 2.6, 2.7, 2.8, 2.9]
covera_list = [1.4, 1.5, 1.6, 1.7, 1.8]
for a in a_list:
    energies = []
    for covera in covera_list:
        atoms = HexagonalClosedPacked(symbol='Ru',
                                      latticeconstant={
                                          'a': a,
                                          'c/a': covera
                                      })
        wd = 'bulk/Ru/{0:1.2f}-{1:1.2f}'.format(a, covera)
        calc = Vasp(
            wd,
            xc='PBE',
            # the c-axis is longer than the a-axis, so we use
            # fewer kpoints.
            kpts=[6, 6, 4],
            encut=350,
            atoms=atoms)
        energies.append(atoms.get_potential_energy())
    if not None in energies:
        plt.plot(covera_list, energies, label=r'a={0} $\AA$'.format(a))
plt.xlabel('$c/a$')
Example #15
0
def main():
    for x in fccs + bccs + hcps + diamonds + rocksalts + zincblendes + cscls:
        f = x in fccs
        b = x in bccs
        h = x in hcps
        d = x in diamonds
        r = x in rocksalts
        z = x in zincblendes
        c = x in cscls

        try:
            if f: a = FaceCenteredCubic(x[0]).get_cell()[0][0] / 2
            elif b: a = BodyCenteredCubic(x[0]).get_cell()[0][0] / 2
            elif d: a = Diamond(x[0]).get_cell()[0][0] / 2
            elif h:
                cell = HexagonalClosedPacked(x[0]).get_cell()
                a, c = cell[0][0], cell[2][2]

            elif r | z | c:
                a = dataLookup(x[0])
            else:
                raise NotImplementedError

        except ValueError:
            a = dataLookup(x[0]) / 2
            print "Had to guess lattice constant of " + x[0]

        if f:
            name, struc, pos, cell, n = '-fcc', 'fcc', [[0, 0, 0]], [[0, a, a],
                                                                     [a, 0, a],
                                                                     [a, a,
                                                                      0]], 1
        elif b:
            name, struc, pos, cell, n = '-bcc', 'bcc', [[0, 0,
                                                         0]], [[a, a, -a],
                                                               [-a, a, a],
                                                               [a, -a, a]], 1
        elif h:
            name, struc, pos, cell, n = '-hcp', 'hexagonal', [[
                0, 0, 0
            ], [2. / 3, 1. / 3, 1. / 2]], [a, a, c, 90, 90, 120], 2
        elif d:
            name, struc, pos, cell, n = '-diamond', 'diamond', [[
                0, 0, 0
            ], [0.25, 0.25, 0.25]], [[0, a, a], [a, 0, a], [a, a, 0]], 2
        elif z:
            name, struc, pos, cell, n = '-zincblende', 'zincblende', [[
                0, 0, 0
            ], [0.25, 0.25, 0.25]], [[0, a, a], [a, 0, a], [a, a, 0]], 1
        elif r:
            name, struc, pos, cell, n = '-rocksalt', 'rocksalt', [[
                0, 0, 0
            ], [0.5, 0.5, 0.5]], [[0, a, a], [a, 0, a], [a, a, 0]], 1
        elif c:
            name, struc, pos, cell, n = '-cscl', 'cubic', [[0, 0, 0],
                                                           [0.5, 0.5, 0.5]], [
                                                               a, a, a, 90, 90,
                                                               90
                                                           ], 1

        mag = magLookup(x[0])
        elems = parseChemicalFormula(x[0]).keys() * n
        magmoms = [magmomInit if e in misc.magElems else 0 for e in elems]

        atoms = Atoms(elems,
                      scaled_positions=pos,
                      cell=cell,
                      pbc=[1, 1, 1],
                      magmoms=magmoms)

        info = {'name': x[0] + name, 'structure': struc}

        db.write(atoms, key_value_pairs=info)
Example #16
0
# properties with a given model
#
# INPUTS: 
#   model.calculator -- an ase.calculator.Calculator instance
#     this script can assume the calculator is checkpointed.
#
# OUTPUTS:
#   properties -- dictionary of key/value pairs corresponding
#     to physical quantities computed by this test

# standard ASE structure generation routines
from ase.lattice.hexagonal import HexagonalClosedPacked
from math import sqrt

import lattice_tetragonal

# the current model
import model 

c_over_a = 1.8
a0 = (16.0*2*2/sqrt(3.0)/c_over_a)**(1.0/3.0)# initial guess at lattice constant, cell will be relaxed below

# set up the a
bulk = HexagonalClosedPacked(symbol='Si', latticeconstant=(a0,a0*c_over_a))

(E_vs_V) = lattice_tetragonal.do_lattice(bulk, elastic=False, tol=1.0e-2)

# dictionary of computed properties - this is output of this test, to
#   be compared with other models
properties = {'hcp_E_vs_V': E_vs_V }
Example #17
0
if __name__ == '__main__':
    from asap3 import EMT, units, EMThcpParameters
    from ase.lattice.cubic import FaceCenteredCubic
    from ase.lattice.hexagonal import HexagonalClosedPacked

    print "Calculating cubic constants for Cu"
    atoms = FaceCenteredCubic(size=(5, 5, 5),
                              symbol='Cu',
                              latticeconstant=3.59495722231)
    atoms.set_calculator(EMT())
    e = ElasticConstants(atoms, 'cubic')
    print np.array(e) / units.GPa

    print "Pretending that Cu is hexagonal"
    e = ElasticConstants(atoms, 'hexagonal', sanity=False)
    print np.array(e) / units.GPa

    print "Calculating elastic constants for Ru"
    atoms = HexagonalClosedPacked(size=(5, 5, 5),
                                  symbol='Ru',
                                  directions=[[1, -2, 1, 0], [1, 0, -1, 0],
                                              [0, 0, 0, 1]])
    atoms.set_calculator(EMT(EMThcpParameters()))
    e = ElasticConstants(atoms, 'hexagonal', minimize=True)
    print np.array(e) / units.GPa
    print "The EMT values are not even close to experimental values!"

    print "Pretending Ru is cubic"
    e = ElasticConstants(atoms, 'cubic')
    print np.array(e) / units.GPa