Example #1
0
 def __init__(self, cutoff_a, cell_cv, pbc_c, self_interaction):
     self.neighbors = PrimitiveNeighborList(
         cutoff_a,
         skin=0,
         sorted=True,
         self_interaction=self_interaction,
         use_scaled_positions=True)
     self.cell_cv = cell_cv
     self.pbc_c = pbc_c
 def __init__(self,
              cutoffs,
              skin=0.3,
              sorted=False,
              self_interaction=True,
              bothways=False):
     PrimitiveNeighborList.__init__(
         self,
         cutoffs,
         skin=skin,
         sorted=sorted,
         self_interaction=self_interaction,
         bothways=bothways)
     self.sndict = {}
     self.axis = np.eye(3)
Example #3
0
def test_hexagonal_cell_and_large_cutoff():
    # Test hexagonal cell and large cutoff
    pbc_c = np.array([True, True, True])
    cutoff_a = np.array([8.0, 8.0])
    cell_cv = np.array([[0., 3.37316113, 3.37316113],
                        [3.37316113, 0., 3.37316113],
                        [3.37316113, 3.37316113, 0.]])
    spos_ac = np.array([[0., 0., 0.], [0.25, 0.25, 0.25]])

    nl = PrimitiveNeighborList(cutoff_a,
                               skin=0.0,
                               sorted=True,
                               use_scaled_positions=True)
    nl2 = NewPrimitiveNeighborList(cutoff_a,
                                   skin=0.0,
                                   sorted=True,
                                   use_scaled_positions=True)
    nl.update(pbc_c, cell_cv, spos_ac)
    nl2.update(pbc_c, cell_cv, spos_ac)

    a0, offsets0 = nl.get_neighbors(0)
    b0 = np.zeros_like(a0)
    d0 = np.dot(spos_ac[a0] + offsets0 - spos_ac[0], cell_cv)
    a1, offsets1 = nl.get_neighbors(1)
    d1 = np.dot(spos_ac[a1] + offsets1 - spos_ac[1], cell_cv)
    b1 = np.ones_like(a1)

    a = np.concatenate([a0, a1])
    b = np.concatenate([b0, b1])
    d = np.concatenate([d0, d1])
    _a = np.concatenate([a, b])
    _b = np.concatenate([b, a])
    a = _a
    b = _b
    d = np.concatenate([d, -d])

    a0, offsets0 = nl2.get_neighbors(0)
    d0 = np.dot(spos_ac[a0] + offsets0 - spos_ac[0], cell_cv)
    b0 = np.zeros_like(a0)
    a1, offsets1 = nl2.get_neighbors(1)
    d1 = np.dot(spos_ac[a1] + offsets1 - spos_ac[1], cell_cv)
    b1 = np.ones_like(a1)

    a2 = np.concatenate([a0, a1])
    b2 = np.concatenate([b0, b1])
    d2 = np.concatenate([d0, d1])
    _a2 = np.concatenate([a2, b2])
    _b2 = np.concatenate([b2, a2])
    a2 = _a2
    b2 = _b2
    d2 = np.concatenate([d2, -d2])

    i = np.argsort(d[:, 0] + d[:, 1] * 1e2 + d[:, 2] * 1e4 + a * 1e6)
    i2 = np.argsort(d2[:, 0] + d2[:, 1] * 1e2 + d2[:, 2] * 1e4 + a2 * 1e6)

    assert np.all(a[i] == a2[i2])
    assert np.all(b[i] == b2[i2])
    assert np.allclose(d[i], d2[i2])
Example #4
0
    def __init__(self, cutoff_a, pbc_c, cell_cv, spos_ac):
        nl = PrimitiveNeighborList(cutoff_a,
                                   skin=0,
                                   sorted=True,
                                   self_interaction=True,
                                   use_scaled_positions=True)

        nl.update(pbc=pbc_c, cell=cell_cv, coordinates=spos_ac)
        r_and_offset_aao = {}

        def add(a1, a2, R_c, offset):
            r_and_offset_aao.setdefault((a1, a2), []).append((R_c, offset))

        for a1, spos1_c in enumerate(spos_ac):
            a2_a, offsets = nl.get_neighbors(a1)
            for a2, offset in zip(a2_a, offsets):
                spos2_c = spos_ac[a2] + offset

                R_c = np.dot(spos2_c - spos1_c, cell_cv)
                add(a1, a2, R_c, offset)
                if a1 != a2 or offset.any():
                    add(a2, a1, -R_c, -offset)
        self.r_and_offset_aao = r_and_offset_aao
Example #5
0
class NeighborPairs:
    """Class for looping over pairs of atoms using a neighbor list."""
    def __init__(self, cutoff_a, cell_cv, pbc_c, self_interaction):
        self.neighbors = PrimitiveNeighborList(
            cutoff_a,
            skin=0,
            sorted=True,
            self_interaction=self_interaction,
            use_scaled_positions=True)
        self.cell_cv = cell_cv
        self.pbc_c = pbc_c

    def set_positions(self, spos_ac):
        self.spos_ac = spos_ac
        self.neighbors.update(self.pbc_c, self.cell_cv, spos_ac)

    def iter(self):
        cell_cv = self.cell_cv
        for a1, spos1_c in enumerate(self.spos_ac):
            a2_a, offsets = self.neighbors.get_neighbors(a1)
            for a2, offset in zip(a2_a, offsets):
                spos2_c = self.spos_ac[a2] + offset
                R_c = np.dot(spos2_c - spos1_c, cell_cv)
                yield a1, a2, R_c, offset
Example #6
0
def test_empty_neighbor_list():
    # Test empty neighbor list
    nl = PrimitiveNeighborList([])
    nl.update([True, True, True], np.eye(3) * 7.56, np.zeros((0, 3)))
Example #7
0
for NeighborListClass in [PrimitiveNeighborList, NewPrimitiveNeighborList]:
    nl = NeighborListClass([c, c],
                           skin=0.0,
                           sorted=True,
                           self_interaction=False,
                           use_scaled_positions=True)
    nl.update([True, True, True],
              np.eye(3) * 7.56, np.array([[0, 0, 0], [0, 0, 0.99875]]))
    n0, d0 = nl.get_neighbors(0)
    n1, d1 = nl.get_neighbors(1)
    # != is xor
    assert (np.all(n0 == [0]) and np.all(d0 == [0, 0, 1])) != \
        (np.all(n1 == [1]) and np.all(d1 == [0, 0, -1]))

# Test empty neighbor list
nl = PrimitiveNeighborList([])
nl.update([True, True, True], np.eye(3) * 7.56, np.zeros((0, 3)))

# Test hexagonal cell and large cutoff
pbc_c = np.array([True, True, True])
cutoff_a = np.array([8.0, 8.0])
cell_cv = np.array([[0., 3.37316113, 3.37316113], [3.37316113, 0., 3.37316113],
                    [3.37316113, 3.37316113, 0.]])
spos_ac = np.array([[0., 0., 0.], [0.25, 0.25, 0.25]])

nl = PrimitiveNeighborList(cutoff_a,
                           skin=0.0,
                           sorted=True,
                           use_scaled_positions=True)
nl2 = NewPrimitiveNeighborList(cutoff_a,
                               skin=0.0,
Example #8
0
def test_neighbor():
    atoms = Atoms(numbers=range(10),
                  cell=[(0.2, 1.2, 1.4), (1.4, 0.1, 1.6), (1.3, 2.0, -0.1)])
    atoms.set_scaled_positions(3 * random.random((10, 3)) - 1)

    for sorted in [False, True]:
        for p1 in range(2):
            for p2 in range(2):
                for p3 in range(2):
                    # print(p1, p2, p3)
                    atoms.set_pbc((p1, p2, p3))
                    nl = NeighborList(atoms.numbers * 0.2 + 0.5,
                                      skin=0.0,
                                      sorted=sorted)
                    nl.update(atoms)
                    d, c = count(nl, atoms)
                    atoms2 = atoms.repeat((p1 + 1, p2 + 1, p3 + 1))
                    nl2 = NeighborList(atoms2.numbers * 0.2 + 0.5,
                                       skin=0.0,
                                       sorted=sorted)
                    nl2.update(atoms2)
                    d2, c2 = count(nl2, atoms2)
                    c2.shape = (-1, 10)
                    dd = d * (p1 + 1) * (p2 + 1) * (p3 + 1) - d2
                    assert abs(dd) < 1e-10
                    assert not (c2 - c).any()

    h2 = Atoms('H2', positions=[(0, 0, 0), (0, 0, 1)])
    nl = NeighborList([0.5, 0.5],
                      skin=0.1,
                      sorted=True,
                      self_interaction=False)
    nl2 = NeighborList([0.5, 0.5],
                       skin=0.1,
                       sorted=True,
                       self_interaction=False,
                       primitive=NewPrimitiveNeighborList)
    assert nl2.update(h2)
    assert nl.update(h2)
    assert not nl.update(h2)
    assert (nl.get_neighbors(0)[0] == [1]).all()
    m = np.zeros((2, 2))
    m[0, 1] = 1
    assert np.array_equal(nl.get_connectivity_matrix(sparse=False), m)
    assert np.array_equal(nl.get_connectivity_matrix(sparse=True).todense(), m)
    assert np.array_equal(nl.get_connectivity_matrix().todense(),
                          nl2.get_connectivity_matrix().todense())

    h2[1].z += 0.09
    assert not nl.update(h2)
    assert (nl.get_neighbors(0)[0] == [1]).all()

    h2[1].z += 0.09
    assert nl.update(h2)
    assert (nl.get_neighbors(0)[0] == []).all()
    assert nl.nupdates == 2

    h2 = Atoms('H2', positions=[(0, 0, 0), (0, 0, 1)])
    nl = NeighborList([0.1, 0.1],
                      skin=0.1,
                      bothways=True,
                      self_interaction=False)
    assert nl.update(h2)
    assert nl.get_neighbors(0)[1].shape == (0, 3)
    assert nl.get_neighbors(0)[1].dtype == int

    x = bulk('X', 'fcc', a=2**0.5)

    nl = NeighborList([0.5], skin=0.01, bothways=True, self_interaction=False)
    nl.update(x)
    assert len(nl.get_neighbors(0)[0]) == 12

    nl = NeighborList([0.5] * 27,
                      skin=0.01,
                      bothways=True,
                      self_interaction=False)
    nl.update(x * (3, 3, 3))
    for a in range(27):
        assert len(nl.get_neighbors(a)[0]) == 12
    assert not np.any(nl.get_neighbors(13)[1])

    c = 0.0058
    for NeighborListClass in [PrimitiveNeighborList, NewPrimitiveNeighborList]:
        nl = NeighborListClass([c, c],
                               skin=0.0,
                               sorted=True,
                               self_interaction=False,
                               use_scaled_positions=True)
        nl.update([True, True, True],
                  np.eye(3) * 7.56, np.array([[0, 0, 0], [0, 0, 0.99875]]))
        n0, d0 = nl.get_neighbors(0)
        n1, d1 = nl.get_neighbors(1)
        # != is xor
        assert (np.all(n0 == [0]) and np.all(d0 == [0, 0, 1])) != \
            (np.all(n1 == [1]) and np.all(d1 == [0, 0, -1]))

    # Test empty neighbor list
    nl = PrimitiveNeighborList([])
    nl.update([True, True, True], np.eye(3) * 7.56, np.zeros((0, 3)))

    # Test hexagonal cell and large cutoff
    pbc_c = np.array([True, True, True])
    cutoff_a = np.array([8.0, 8.0])
    cell_cv = np.array([[0., 3.37316113, 3.37316113],
                        [3.37316113, 0., 3.37316113],
                        [3.37316113, 3.37316113, 0.]])
    spos_ac = np.array([[0., 0., 0.], [0.25, 0.25, 0.25]])

    nl = PrimitiveNeighborList(cutoff_a,
                               skin=0.0,
                               sorted=True,
                               use_scaled_positions=True)
    nl2 = NewPrimitiveNeighborList(cutoff_a,
                                   skin=0.0,
                                   sorted=True,
                                   use_scaled_positions=True)
    nl.update(pbc_c, cell_cv, spos_ac)
    nl2.update(pbc_c, cell_cv, spos_ac)

    a0, offsets0 = nl.get_neighbors(0)
    b0 = np.zeros_like(a0)
    d0 = np.dot(spos_ac[a0] + offsets0 - spos_ac[0], cell_cv)
    a1, offsets1 = nl.get_neighbors(1)
    d1 = np.dot(spos_ac[a1] + offsets1 - spos_ac[1], cell_cv)
    b1 = np.ones_like(a1)

    a = np.concatenate([a0, a1])
    b = np.concatenate([b0, b1])
    d = np.concatenate([d0, d1])
    _a = np.concatenate([a, b])
    _b = np.concatenate([b, a])
    a = _a
    b = _b
    d = np.concatenate([d, -d])

    a0, offsets0 = nl2.get_neighbors(0)
    d0 = np.dot(spos_ac[a0] + offsets0 - spos_ac[0], cell_cv)
    b0 = np.zeros_like(a0)
    a1, offsets1 = nl2.get_neighbors(1)
    d1 = np.dot(spos_ac[a1] + offsets1 - spos_ac[1], cell_cv)
    b1 = np.ones_like(a1)

    a2 = np.concatenate([a0, a1])
    b2 = np.concatenate([b0, b1])
    d2 = np.concatenate([d0, d1])
    _a2 = np.concatenate([a2, b2])
    _b2 = np.concatenate([b2, a2])
    a2 = _a2
    b2 = _b2
    d2 = np.concatenate([d2, -d2])

    i = np.argsort(d[:, 0] + d[:, 1] * 1e2 + d[:, 2] * 1e4 + a * 1e6)
    i2 = np.argsort(d2[:, 0] + d2[:, 1] * 1e2 + d2[:, 2] * 1e4 + a2 * 1e6)

    assert np.all(a[i] == a2[i2])
    assert np.all(b[i] == b2[i2])
    assert np.allclose(d[i], d2[i2])