from asist.pitot import read_pitot_from_netcdf from datetime import datetime, timedelta import numpy as np import os from netCDF4 import Dataset np.warnings.filterwarnings('ignore') # ignore numpy warnings L2_DATA_PATH = os.environ['L2_DATA_PATH'] exp_name = 'asist-windonly-salt' exp = experiments[exp_name] hotfilm_filename = 'hotfilm_' + exp_name + '.nc' origin, hotfilm_seconds, fan, ch1, ch2 = read_hotfilm_from_netcdf( hotfilm_filename) origin, pitot_seconds, fan, u_pitot = read_pitot_from_netcdf(L2_DATA_PATH + '/pitot_' + exp_name + '.nc') ch1, ch2 = clean_hotfilm_exp3(exp, ch1, ch2, hotfilm_seconds) # start and end time of fitting period t0 = exp.runs[1].start_time + timedelta(seconds=60) t1 = exp.runs[-2].end_time # start and end seconds of fitting period t0_seconds = (t0 - origin).total_seconds() t1_seconds = (t1 - origin).total_seconds() # start index of pitot and hotfilm time series
from asist.hotfilm import hotfilm_velocity, read_hotfilm_from_netcdf from asist.pitot import read_pitot_from_netcdf from datetime import datetime, timedelta import numpy as np import os import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 16}) # global font size setting np.warnings.filterwarnings('ignore') # ignore numpy warnings L2_DATA_PATH = os.environ['L2_DATA_PATH'] exp_name = 'asist-windonly-salt' exp = experiments[exp_name] origin, hotfilm_seconds, fan, ch1, ch2 = read_hotfilm_from_netcdf(L2_DATA_PATH + '/hotfilm_' + exp_name + '.nc') origin, pitot_seconds, fan, u = read_pitot_from_netcdf(L2_DATA_PATH + '/pitot_' + exp_name + '.nc') ch1, ch2 = clean_hotfilm_exp3(exp, ch1, ch2, hotfilm_seconds) # start and end time of fitting period t0 = exp.runs[1].start_time + timedelta(seconds=60) t1 = exp.runs[-2].end_time # start and end seconds of fitting period t0_seconds = (t0 - origin).total_seconds() t1_seconds = (t1 - origin).total_seconds() # start index of pitot and hotfilm time series n0 = np.argmin((pitot_seconds - t0_seconds)**2) n1 = np.argmin((pitot_seconds - t1_seconds)**2)