def prepare_training_data_modelx(): sts_scores = np.array(get_sts_scores('score.train')) _x, to_remove = get_asiya_scores() x = np.array(_x) y = sts_scores y =np.delete(y, to_remove, axis=0) n = len(y) np.savetxt('x.asiya.train', x) np.savetxt('y.asiya.train', y) test_asiya_scores = np.array(get_asiya_test_scores()) np.savetxt('x.asiya.test', test_asiya_scores)
from sklearn.gaussian_process import GaussianProcess from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sts_data import get_meteor_scores, get_sts_scores from asiya import get_asiya_scores meteor_scores = np.array(get_meteor_scores('meteor.output.train')) sts_scores = np.array(get_sts_scores('score.train')) test_meteor_scores = np.array(get_meteor_scores('meteor.output.test')) x = meteor_scores _x, to_remove = get_asiya_scores() x = np.array(_x) y = sts_scores y = np.delete(y, to_remove, axis=0) n = len(y) xt = x #print len(_x), len(x), len(y) # Linear Regression print 'linear' lr = LinearRegression() #lr.fit(x[:, np.newaxis], y) #lr_sts_scores = lr.predict(xt[:, np.newaxis]) lr.fit(x, y)
from sklearn.gaussian_process import GaussianProcess from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sts_data import get_meteor_scores, get_sts_scores from asiya import get_asiya_scores meteor_scores = np.array(get_meteor_scores('meteor.output.train')) sts_scores = np.array(get_sts_scores('score.train')) test_meteor_scores = np.array(get_meteor_scores('meteor.output.test')) x = meteor_scores _x, to_remove = get_asiya_scores() x = np.array(_x) y = sts_scores y =np.delete(y, to_remove, axis=0) n = len(y) xt = x #print len(_x), len(x), len(y) # Linear Regression print 'linear' lr = LinearRegression() #lr.fit(x[:, np.newaxis], y) #lr_sts_scores = lr.predict(xt[:, np.newaxis]) lr.fit(x, y)