def test_phoneme_table_add_labels(): phoneme_table = PhonemeTable() phoneme_table.add_labels(['a', 'i']) assert phoneme_table.num_labels() == 4 assert phoneme_table.get_label_id('a') == 2 assert phoneme_table.get_label(2) == 'a' assert phoneme_table.get_label_id('i') == 3 assert phoneme_table.get_label(3) == 'i'
args.development_data_dirname) repository_dev = DevelopmentDatasetRepository(development_data_dirpath) dataloaders_dev = [] for dataset_dev in AudioDataset.load_all(repository_dev, phoneme_table): dataloader_dev = DataLoader(dataset_dev, batch_size=args.batch_size, collate_fn=collate_for_ctc) dataloaders_dev.append(dataloader_dev) feature_params_path = os.path.join(args.workdir, args.feature_params_file) feature_params = FeatureParams.load(feature_params_path) model_path = os.path.join(args.workdir, args.model_file) if args.resume is True: print('Loading model ...') model = EESENAcousticModel.load(model_path) else: print('Initializing model ...') blank = phoneme_table.get_blank_id() model = EESENAcousticModel(feature_params.feature_size, args.hidden_size, args.num_layers, phoneme_table.num_labels(), blank=blank) model.to(torch.device(args.device)) model.set_optimizer(args.optimizer, args.lr) print('Training ...') model.train(dataloader_tr, dataloaders_dev, args.epochs) print('Saving model ...') model.save(model_path)
def test_phoneme_table_add_label(): phoneme_table = PhonemeTable() phoneme_table.add_label('a') assert phoneme_table.num_labels() == 3 assert phoneme_table.get_label_id('a') == 2 assert phoneme_table.get_label(2) == 'a'