Example #1
0
def get_statistics(project_id):
    fp_lock = get_lock_path(project_id)

    with SQLiteLock(fp_lock, blocking=True, lock_name="active"):
        # get the index of the active iteration
        label_history = read_label_history(project_id)
        current_labels = read_current_labels(project_id,
                                             label_history=label_history)

    n_since_last_inclusion = 0
    for _, inclusion in reversed(label_history):
        if inclusion == 1:
            break
        n_since_last_inclusion += 1

    n_included = len(np.where(current_labels == 1)[0])
    n_excluded = len(np.where(current_labels == 0)[0])
    n_papers = len(current_labels)
    stats = {
        "n_included": n_included,
        "n_excluded": n_excluded,
        "n_since_last_inclusion": n_since_last_inclusion,
        "n_papers": n_papers,
        "n_pool": n_papers - n_included - n_excluded
    }
    return stats
Example #2
0
def export_to_string(project_id, export_type="csv"):
    fp_lock = get_lock_path(project_id)
    as_data = read_data(project_id)
    with SQLiteLock(fp_lock, blocking=True, lock_name="active"):
        proba = read_proba(project_id)
        if proba is None:
            proba = np.flip(np.arange(len(as_data)))
        else:
            proba = np.array(proba)
        labels = read_current_labels(project_id, as_data=as_data)

    pool_idx = np.where(labels == LABEL_NA)[0]
    one_idx = np.where(labels == 1)[0]
    zero_idx = np.where(labels == 0)[0]

    proba_order = np.argsort(-proba[pool_idx])
    ranking = np.concatenate((one_idx, pool_idx[proba_order], zero_idx),
                             axis=None)

    if export_type == "csv":
        return as_data.to_csv(fp=None, labels=labels, ranking=ranking)
    if export_type == "excel":
        get_tmp_path(project_id).mkdir(exist_ok=True)
        fp_tmp_export = Path(get_tmp_path(project_id), "export_result.xlsx")
        return as_data.to_excel(fp=fp_tmp_export,
                                labels=labels,
                                ranking=ranking)
    else:
        raise ValueError("This export type isn't implemented.")
Example #3
0
def export_to_string(project_id):
    fp_lock = get_lock_path(project_id)
    as_data = read_data(project_id)
    with SQLiteLock(fp_lock, blocking=True, lock_name="active"):
        proba = read_proba(project_id)
        if proba is None:
            proba = np.flip(np.arange(len(as_data)))
        else:
            proba = np.array(proba)
        labels = read_current_labels(project_id, as_data=as_data)

    pool_idx = np.where(labels == LABEL_NA)[0]
    one_idx = np.where(labels == 1)[0]
    zero_idx = np.where(labels == 0)[0]

    proba_order = np.argsort(-proba[pool_idx])
    ranking = np.concatenate((one_idx, pool_idx[proba_order], zero_idx),
                             axis=None)
    return as_data.to_csv(fp=None, labels=labels, ranking=ranking)