Example #1
0
 def get_change_point(self, other):
     seq = range(256)
     seq.reverse()
     max = -1
     max_x = 0
     for kc in seq:
         xc = BinaryImage.to_xc(kc)
         pb = self.binarization(xc)
         qb = other.binarization(xc)
         
         d = BinaryImage(pb).diff(qb)
         dd = DensityDistribution(d)
         black = DensityDistribution(Image.new('L', self.image.size, 0))
         divergence = dd.divergence(black)
         
         if abs(divergence) > max:
             max = abs(divergence)
             max_x = xc
     return max_x
Example #2
0
# -*- coding: utf-8 -*-
#    
#    assignment5.output
#    created by 25090335 Kohki Miki on 2011/08/11
#
from PIL import Image
from assignment4.no1 import DensityDistribution
from matplotlib import pyplot

image = DensityDistribution(Image.open(r"../../Resources/CIMG0211.gif"))
xs, ys = image.density_distribution()
for x, y in zip(xs, ys):
    print x, y
Example #3
0
class GaussianFitting(object):
    def gaussian(self, params, x):
        a, m1, m2, s1, s2 = params
        p = a/numpy.sqrt(2*numpy.pi*s1**2)*numpy.exp(-(x-m1)**2/(2*s1**2)) + (1-a)/numpy.sqrt(2*numpy.pi*s2**2)*numpy.exp(-(x-m2)**2/(2*s2**2))
        return p
    def residuals(self, params, x, y):
        err = self.gaussian(params, x) - y
        return err
    def fitting(self, x, y, initial=None):
        if not initial: initial = [0.] * 5
        result = leastsq(self.residuals, initial, args=(x, y), full_output=False)
        return result

if __name__ == '__main__':
    p1 = DensityDistribution(Image.open(r"../../Resources/CIMG0209.gif"))
    x, y = p1.density_distribution()
    gf = GaussianFitting()
    initial = (0.63583867, 3.22051539, 1.26030523, 0.64014307, 0.52168001)
    params = gf.fitting(x, y, initial)
    time = numpy.linspace(x[0], x[-1], 100)
    print params[0]
    pyplot.plot(x, y, x, [gf.gaussian(params[0], t) for t in x], "r-")
    pyplot.title(r"CIMG0209.gif")
    pyplot.xlabel("x")
    pyplot.ylabel("P(x)")
    pyplot.show()
    
    p2 = DensityDistribution(Image.open(r"../../Resources/CIMG0210.gif"))
    x, y = p2.density_distribution()
    gf = GaussianFitting()