def run_example(with_plots=True):
    r"""
    Example for the use of LSODAR method to solve
    Van der Pol's equation
    
    .. math::
       
        \dot y_1 &= y_2 \\
        \dot y_2 &= \mu ((1.-y_1^2) y_2-y_1)

    with :math:`\mu=\frac{1}{5} 10^3`.

    on return:
    
       - :dfn:`exp_mod`    problem instance
    
       - :dfn:`exp_sim`    solver instance

    """
    
    #Define the rhs
    def f(t,y):
        eps = 1.e-6
        my = 1./eps
        yd_0 = y[1]
        yd_1 = my*((1.-y[0]**2)*y[1]-y[0])
        
        return N.array([yd_0,yd_1])
    
    y0 = [2.0,-0.6] #Initial conditions
    
    #Define an Assimulo problem
    exp_mod = Explicit_Problem(f,y0, name = "LSODAR: Van der Pol's equation")
    
    #Define an explicit solver
    exp_sim = LSODAR(exp_mod) #Create a Radau5 solver
    
    #Sets the parameters
    exp_sim.atol = 1e-4 #Default 1e-6
    exp_sim.rtol = 1e-4 #Default 1e-6
        
    #Simulate
    t, y = exp_sim.simulate(2.) #Simulate 2 seconds
    
     #Plot
    if with_plots:
        import pylab as P
        P.plot(t,y[:,0], marker='o')
        P.title(exp_mod.name)
        P.ylabel("State: $y_1$")
        P.xlabel("Time")
        P.show()
    
    #Basic test
    x1 = y[:,0]
    assert N.abs(x1[-1]-1.706168035) < 1e-3 #For test purpose
    
    return exp_mod, exp_sim
Example #2
0
    def setUp(self):
        """
        This sets up the test case.
        """
        def f(t, y):
            eps = 1.e-6
            my = 1. / eps
            yd_0 = y[1]
            yd_1 = my * ((1. - y[0]**2) * y[1] - y[0])

            return N.array([yd_0, yd_1])

        def jac(t, y):
            eps = 1.e-6
            my = 1. / eps
            J = N.zeros([2, 2])

            J[0, 0] = 0.
            J[0, 1] = 1.
            J[1, 0] = my * (-2. * y[0] * y[1] - 1.)
            J[1, 1] = my * (1. - y[0]**2)

            return J

        def jac_sparse(t, y):
            eps = 1.e-6
            my = 1. / eps
            J = N.zeros([2, 2])

            J[0, 0] = 0.
            J[0, 1] = 1.
            J[1, 0] = my * (-2. * y[0] * y[1] - 1.)
            J[1, 1] = my * (1. - y[0]**2)

            return sp.csc_matrix(J)

        #Define an Assimulo problem
        y0 = [2.0, -0.6]  #Initial conditions

        exp_mod = Explicit_Problem(f, y0)
        exp_mod_t0 = Explicit_Problem(f, y0, 1.0)
        exp_mod_sp = Explicit_Problem(f, y0)

        exp_mod.jac = jac
        exp_mod_sp.jac = jac_sparse
        self.mod = exp_mod

        #Define an explicit solver
        self.sim = LSODAR(exp_mod)  #Create a LSODAR solve
        self.sim_sp = LSODAR(exp_mod_sp)

        #Sets the parameters
        self.sim.atol = 1e-6  #Default 1e-6
        self.sim.rtol = 1e-6  #Default 1e-6
        self.sim.usejac = False
Example #3
0
    def test_event_localizer(self):
        exp_mod = Extended_Problem()  #Create the problem

        exp_sim = LSODAR(exp_mod)  #Create the solver

        exp_sim.verbosity = 0
        exp_sim.report_continuously = True

        #Simulate
        t, y = exp_sim.simulate(
            10.0, 1000)  #Simulate 10 seconds with 1000 communications points

        #Basic test
        nose.tools.assert_almost_equal(y[-1][0], 8.0)
        nose.tools.assert_almost_equal(y[-1][1], 3.0)
        nose.tools.assert_almost_equal(y[-1][2], 2.0)
Example #4
0
def test_against_normal_solvers():
    """ Test the HHT method on the damper system and compares the
    result against a simulation using LSODAR 
    """
    end = 10.0
    ode = flattened_2nd_order(3, 2, 3)
    y0 = 3.0
    v0 = 2.0
    prob = Explicit_Problem(ode, [y0,v0])
    exp_sim = LSODAR(prob)
    t, y = exp_sim.simulate(end)
    
    ode = mass_spring_damper(3, 2, 3)
    prob = Explicit_Problem(ode, y0)
    hht = HHT(prob, v0, alpha = -0.2)
    t, y_2 = hht.simulate(end)
    nose.tools.assert_almost_equal(y[-1][0]/y[-1][0], y_2[-1]/y[-1][0],places = 1)
Example #5
0
def test_pend_newmark_against_normal():
    """ Test out newmark solver againts the pendulum by comparing the result
    of a simulation against one done by assimulo"""
    import problems as p
    from matplotlib.pylab import plot, show
    pend = p.Pendulum2nd()
    ode  = pend.fcn
    end = 15
    y0   = pend.initial_condition()
    prob = Explicit_Problem(ode, y0[0])
    nmark = Newmark(prob, y0[1], beta = .7, gamma = .5)
    t, y_2 = nmark.simulate(end)
    
    ode  = pend.fcn_1
    prob = Explicit_Problem(ode, y0)
    sim = LSODAR(prob)
    t, y_3 = sim.simulate(end)
    
    nose.tools.assert_almost_equal(y_3[-1][0]/y_3[-1][0], y_2[-1]/y_3[-1][0],places = 1)
Example #6
0
def test_pend_hht_against_normal():
    """ Test out hht solver againts the pendulum by comparing the result
    of a simulation against one done by assimulo"""
    import problems as p
    from matplotlib.pylab import plot, show, figure
    pend = p.Pendulum2nd()
    ode  = pend.fcn
    end = 15
    y0   = pend.initial_condition()
    prob = Explicit_Problem(ode, y0[0])
    hht = HHT(prob, y0[1], alpha=-0.2)
    t, y_1 = hht.simulate(end)
    
    ode  = pend.fcn_1
    prob = Explicit_Problem(ode, y0)
    sim = LSODAR(prob)
    t, y_3 = sim.simulate(end)
    
    nose.tools.assert_almost_equal(y_3[-1][0]/y_3[-1][0], y_1[-1]/y_3[-1][0],places = 1)
def run_example(with_plots=True):
    r"""
    Example of the use of Euler's method for a differential equation
    with a discontinuity (state event) and the need for an event iteration.
    
    on return:
    
       - :dfn:`exp_mod`    problem instance
    
       - :dfn:`exp_sim`    solver instance
    """
    #Create an instance of the problem
    exp_mod = Extended_Problem()  #Create the problem

    exp_sim = LSODAR(exp_mod)  #Create the solver

    exp_sim.verbosity = 0
    exp_sim.continuous_output = True

    #Simulate
    t, y = exp_sim.simulate(
        10.0, 100)  #Simulate 10 seconds with 1000 communications points

    #Plot
    if with_plots:
        import pylab as P
        P.plot(t, y)
        P.title("Solution of a differential equation with discontinuities")
        P.ylabel('States')
        P.xlabel('Time')
        P.show()

    return exp_mod, exp_sim

    #Basic test
    nose.tools.assert_almost_equal(y[-1][0], 8.0)
    nose.tools.assert_almost_equal(y[-1][1], 3.0)
    nose.tools.assert_almost_equal(y[-1][2], 2.0)
def run_example(with_plots=True):
    """
    Bouncing ball example to demonstrate LSODAR's 
    discontinuity handling.

    Also a way to use :program:`problem.initialize` and :program:`problem.handle_result`
    in order to provide extra information is demonstrated.

    The governing differential equation is

    .. math::

       \\dot y_1 &= y_2\\\\
       \\dot y_2 &= -9.81

    and the switching functions are

    .. math::

       \\mathrm{event}_0 &= y_1 \\;\\;\\;\\text{ if } \\;\\;\\;\\mathrm{sw}_0 = 1\\\\
       \\mathrm{event}_1 &= y_2 \\;\\;\\;\\text{ if }\\;\\;\\; \\mathrm{sw}_1 = 1

    otherwise the events are deactivated by setting the respective value to something different from 0.


    The event handling sets 

    :math:`y_1 = - 0.88 y_1` and :math:`\\mathrm{sw}_1 = 1` if the first event triggers 
    and :math:`\\mathrm{sw}_1 = 0`   if the second event triggers.

    """
    #Create an instance of the problem
    exp_mod = Extended_Problem()  #Create the problem

    exp_sim = LSODAR(exp_mod)  #Create the solver
    exp_sim.atol = 1.e-8
    exp_sim.report_continuously = True

    exp_sim.verbosity = 30

    #Simulate
    t, y = exp_sim.simulate(10.0)  #Simulate 10 seconds

    #Plot
    if with_plots:
        P.subplot(221)
        P.plot(t, y)
        P.title('LSODAR Bouncing ball (one step mode)')
        P.ylabel('States: $y$ and $\dot y$')
        P.subplot(223)
        P.plot(exp_sim.t_sol, exp_sim.h_sol)
        P.title('LSODAR step size plot')
        P.xlabel('Time')
        P.ylabel('Sepsize')
        P.subplot(224)
        P.plot(exp_sim.t_sol, exp_sim.nq_sol)
        P.title('LSODAR order plot')
        P.xlabel('Time')
        P.ylabel('Order')
        P.suptitle(exp_mod.name)
        P.show()
    return exp_mod, exp_sim
Example #9
0
class Test_LSODAR:
    """
    Tests the LSODAR solver.
    """
    def setUp(self):
        """
        This sets up the test case.
        """
        def f(t, y):
            eps = 1.e-6
            my = 1. / eps
            yd_0 = y[1]
            yd_1 = my * ((1. - y[0]**2) * y[1] - y[0])

            return N.array([yd_0, yd_1])

        def jac(t, y):
            eps = 1.e-6
            my = 1. / eps
            J = N.zeros([2, 2])

            J[0, 0] = 0.
            J[0, 1] = 1.
            J[1, 0] = my * (-2. * y[0] * y[1] - 1.)
            J[1, 1] = my * (1. - y[0]**2)

            return J

        def jac_sparse(t, y):
            eps = 1.e-6
            my = 1. / eps
            J = N.zeros([2, 2])

            J[0, 0] = 0.
            J[0, 1] = 1.
            J[1, 0] = my * (-2. * y[0] * y[1] - 1.)
            J[1, 1] = my * (1. - y[0]**2)

            return sp.csc_matrix(J)

        #Define an Assimulo problem
        y0 = [2.0, -0.6]  #Initial conditions

        exp_mod = Explicit_Problem(f, y0)
        exp_mod_t0 = Explicit_Problem(f, y0, 1.0)
        exp_mod_sp = Explicit_Problem(f, y0)

        exp_mod.jac = jac
        exp_mod_sp.jac = jac_sparse
        self.mod = exp_mod

        #Define an explicit solver
        self.sim = LSODAR(exp_mod)  #Create a LSODAR solve
        self.sim_sp = LSODAR(exp_mod_sp)

        #Sets the parameters
        self.sim.atol = 1e-6  #Default 1e-6
        self.sim.rtol = 1e-6  #Default 1e-6
        self.sim.usejac = False

    @testattr(stddist=True)
    def test_simulation(self):
        """
        This tests the LSODAR with a simulation of the van der pol problem.
        """
        self.sim.simulate(1.)  #Simulate 2 seconds

        nose.tools.assert_almost_equal(self.sim.y_sol[-1][0], -1.863646028, 4)

    @testattr(stddist=True)
    def test_setcoefficients(self):
        elco, tesco = dcfode(1)
        nose.tools.assert_almost_equal(elco[0, 2], 5. / 12., 9)  # AM-2
        nose.tools.assert_almost_equal(tesco[0, 2], 2., 9)  # AM-2 error coeff

    @testattr(stddist=True)
    def test_readcommon(self):
        """
        This tests the LSODAR's subroutine dsrcar  (read functionality).
        """
        self.sim.simulate(1.)  #Simulate 2 seconds
        r = N.ones((245, ), 'd')
        i = N.ones((55, ), 'i')
        dsrcar(r, i, 1)
        nose.tools.assert_almost_equal(r[217], 2.22044605e-16, 20)
        nose.tools.assert_equal(i[36], 3)

    @testattr(stddist=True)
    def test_writereadcommon(self):
        """
        This tests the LSODAR's subroutine dsrcar  (write and read functionality).
        """
        r = N.ones((245, ), 'd')
        i = N.ones((55, ), 'i')
        dsrcar(r, i, 2)
        r[0] = 100.
        i[0] = 10
        dsrcar(r, i, 1)
        nose.tools.assert_almost_equal(r[0], 1., 4)
        nose.tools.assert_equal(i[0], 1)

    def test_rkstarter(self):
        """
        This test checks the correctness of the Nordsieck array generated 
        from a RK starter
        """
        pass
        """
        A=N.array([[0.,1.],[-4.,0.]])
        def f(t,x,sw0):
            return N.dot(A,N.array(x))
        H = 1.e-8
        # Compute the exact solution at h=0,H/4,H/2,3H/4,H
        T=N.array([0.,H/4.,H/2.,3./4.*H,H])
        y0=N.array([1.,0.])
        from scipy.linalg import expm
        exact=N.array([N.dot(expm(A*t),y0) for t in T])
        #polynomial interpolation
        from scipy import polyfit
        coeff = polyfit(T,exact,4)
        d1coeff=N.array([4,3,2,1]).reshape(-1,1)*coeff[:-1,:]
        d2coeff=N.array([3,2,1]).reshape(-1,1)*d1coeff[:-1,:]
        d3coeff=N.array([2,1]).reshape(-1,1)*d2coeff[:-1,:]
        d4coeff=N.array([1]).reshape(-1,1)*d3coeff[:-1,:]
        h=H/4.
        nordsieck_at_0=N.array([coeff[-1,:],h*d1coeff[-1,:],h**2/2.*d2coeff[-1,:],
                                     h**3/6.*d3coeff[-1,:],h**4/24.*d4coeff[-1,:]])
        rkNordsieck=odepack.RKStarterNordsieck(f,H)
        computed=rkNordsieck(0,y0)       
        numpy.testing.assert_allclose(computed[1], nordsieck_at_0, atol=H/100., verbose=True)      
        """

    @testattr(stddist=True)
    def test_interpol(self):
        # a with interpolation and report_continuously
        self.sim.report_continuously = True
        t_sol, y_sol = self.sim.simulate(1., ncp_list=[0.5])
        self.sim.reset()
        t_sol1, y_sol1 = self.sim.simulate(0.5)
        ind05 = N.nonzero(N.array(t_sol) == 0.5)[0][0]
        #print y_sol[ind05],y_sol1[-1]
        nose.tools.assert_almost_equal(y_sol[ind05, 0], y_sol1[-1, 0], 6)

    def test_simulation_with_jac(self):
        """
        This tests the LSODAR with a simulation of the van der pol problem.
        """
        self.sim.usejac = True
        self.sim.simulate(1.)  #Simulate 2 seconds

        nose.tools.assert_almost_equal(self.sim.y_sol[-1][0], -1.863646028, 4)

    @testattr(stddist=True)
    def test_simulation_ncp(self):
        self.sim.simulate(1., 100)  #Simulate 2 seconds

        nose.tools.assert_almost_equal(self.sim.y_sol[-1][0], -1.863646028, 4)

    @testattr(stddist=True)
    def test_usejac_csc_matrix(self):
        self.sim_sp.usejac = True

        self.sim_sp.simulate(2.)  #Simulate 2 seconds

        assert self.sim_sp.statistics["nfcnjacs"] == 0

        nose.tools.assert_almost_equal(self.sim_sp.y_sol[-1][0], 1.7061680350,
                                       4)

    @testattr(stddist=True)
    def test_simulation_ncp_list(self):
        self.sim.simulate(1., ncp_list=[0.5])  #Simulate 2 seconds

        nose.tools.assert_almost_equal(self.sim.y_sol[-1][0], -1.863646028, 4)

    @testattr(stddist=True)
    def test_maxh(self):

        self.sim.hmax = 1.0
        assert self.sim.options["maxh"] == 1.0
        assert self.sim.maxh == 1.0

        self.sim.maxh = 2.0
        assert self.sim.options["maxh"] == 2.0
        assert self.sim.maxh == 2.0

    @testattr(stddist=True)
    def test_simulation_ncp_list_2(self):
        self.sim.simulate(1., ncp_list=[0.5, 4])  #Simulate 2 seconds

        nose.tools.assert_almost_equal(self.sim.y_sol[-1][0], -1.863646028, 4)

    @testattr(stddist=True)
    def test_simulation_ncp_with_jac(self):
        """
        Test a simulation with ncp.
        """
        self.sim.usejac = True
        self.sim.simulate(1., 100)  #Simulate 2 seconds

        nose.tools.assert_almost_equal(self.sim.y_sol[-1][0], -1.863646028, 4)
Example #10
0
    def _default_solver_instance(self):
        from assimulo.solvers import LSODAR

        return LSODAR(self._assimulo_problem)