Example #1
0
def main(conf):
    train_set = WhamRDataset(
        conf["data"]["train_dir"],
        conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    )
    val_set = WhamRDataset(
        conf["data"]["valid_dir"],
        conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    )

    train_loader = DataLoader(
        train_set,
        shuffle=True,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    val_loader = DataLoader(
        val_set,
        shuffle=False,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    # Update number of source values (It depends on the task)
    conf["masknet"].update({"n_src": train_set.n_src})

    # Define model and optimizer in a local function (defined in the recipe).
    # Two advantages to this : re-instantiating the model and optimizer
    # for retraining and evaluating is straight-forward.
    model, optimizer = make_model_and_optimizer(conf)
    # Define scheduler
    scheduler = None
    if conf["training"]["half_lr"]:
        scheduler = ReduceLROnPlateau(optimizer=optimizer,
                                      factor=0.5,
                                      patience=5)
    # Just after instantiating, save the args. Easy loading in the future.
    exp_dir = conf["main_args"]["exp_dir"]
    os.makedirs(exp_dir, exist_ok=True)
    conf_path = os.path.join(exp_dir, "conf.yml")
    with open(conf_path, "w") as outfile:
        yaml.safe_dump(conf, outfile)

    # Define Loss function.
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")
    system = System(
        model=model,
        loss_func=loss_func,
        optimizer=optimizer,
        train_loader=train_loader,
        val_loader=val_loader,
        scheduler=scheduler,
        config=conf,
    )

    # Define callbacks
    checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    checkpoint = ModelCheckpoint(checkpoint_dir,
                                 monitor="val_loss",
                                 mode="min",
                                 save_top_k=5,
                                 verbose=True)
    early_stopping = False
    if conf["training"]["early_stop"]:
        early_stopping = EarlyStopping(monitor="val_loss",
                                       patience=30,
                                       verbose=True)

    # Don't ask GPU if they are not available.
    gpus = -1 if torch.cuda.is_available() else None
    trainer = pl.Trainer(
        max_epochs=conf["training"]["epochs"],
        checkpoint_callback=checkpoint,
        early_stop_callback=early_stopping,
        default_root_dir=exp_dir,
        gpus=gpus,
        distributed_backend="dp",
        train_percent_check=1.0,  # Useful for fast experiment
        gradient_clip_val=5.0,
    )
    trainer.fit(system)

    best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
    with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
        json.dump(best_k, f, indent=0)
Example #2
0
def main(conf):
    model = load_best_model(conf["train_conf"], conf["exp_dir"])
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device
    test_set = WhamRDataset(
        conf["test_dir"],
        conf["task"],
        sample_rate=conf["sample_rate"],
        nondefault_nsrc=model.n_src,
        segment=None,
    )  # Uses all segment length
    # Used to reorder sources only
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")

    # Randomly choose the indexes of sentences to save.
    ex_save_dir = os.path.join(conf["exp_dir"], "examples/")
    if conf["n_save_ex"] == -1:
        conf["n_save_ex"] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources = tensors_to_device(test_set[idx], device=model_device)
        est_sources = model(mix[None, None])
        loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True)
        mix_np = mix[None].cpu().data.numpy()
        sources_np = sources.cpu().data.numpy()
        est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
        utt_metrics = get_metrics(
            mix_np,
            sources_np,
            est_sources_np,
            sample_rate=conf["sample_rate"],
            metrics_list=compute_metrics,
        )
        utt_metrics["mix_path"] = test_set.mix[idx][0]
        series_list.append(pd.Series(utt_metrics))

        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np[0], conf["sample_rate"])
            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx + 1), src, conf["sample_rate"])
            for src_idx, est_src in enumerate(est_sources_np):
                sf.write(
                    local_save_dir + "s{}_estimate.wav".format(src_idx + 1),
                    est_src,
                    conf["sample_rate"],
                )
            # Write local metrics to the example folder.
            with open(local_save_dir + "metrics.json", "w") as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(conf["exp_dir"], "all_metrics.csv"))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        input_metric_name = "input_" + metric_name
        ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
        final_results[metric_name] = all_metrics_df[metric_name].mean()
        final_results[metric_name + "_imp"] = ldf.mean()
    print("Overall metrics :")
    pprint(final_results)
    with open(os.path.join(conf["exp_dir"], "final_metrics.json"), "w") as f:
        json.dump(final_results, f, indent=0)
Example #3
0
def main(conf):
    train_set = WhamRDataset(conf['data']['train_dir'], conf['data']['task'],
                             sample_rate=conf['data']['sample_rate'],
                             nondefault_nsrc=conf['data']['nondefault_nsrc'])
    val_set = WhamRDataset(conf['data']['valid_dir'], conf['data']['task'],
                           sample_rate=conf['data']['sample_rate'],
                           nondefault_nsrc=conf['data']['nondefault_nsrc'])

    train_loader = DataLoader(train_set, shuffle=True,
                              batch_size=conf['training']['batch_size'],
                              num_workers=conf['training']['num_workers'],
                              drop_last=True)
    val_loader = DataLoader(val_set, shuffle=False,
                            batch_size=conf['training']['batch_size'],
                            num_workers=conf['training']['num_workers'],
                            drop_last=True)
    # Update number of source values (It depends on the task)
    conf['masknet'].update({'n_src': train_set.n_src})

    # Define model and optimizer in a local function (defined in the recipe).
    # Two advantages to this : re-instantiating the model and optimizer
    # for retraining and evaluating is straight-forward.
    model, optimizer = make_model_and_optimizer(conf)
    # Define scheduler
    scheduler = None
    if conf['training']['half_lr']:
        scheduler = ReduceLROnPlateau(optimizer=optimizer, factor=0.5,
                                      patience=5)
    # Just after instantiating, save the args. Easy loading in the future.
    exp_dir = conf['main_args']['exp_dir']
    os.makedirs(exp_dir, exist_ok=True)
    conf_path = os.path.join(exp_dir, 'conf.yml')
    with open(conf_path, 'w') as outfile:
        yaml.safe_dump(conf, outfile)

    # Define Loss function.
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx')
    system = System(model=model, loss_func=loss_func, optimizer=optimizer,
                    train_loader=train_loader, val_loader=val_loader,
                    scheduler=scheduler, config=conf)

    # Define callbacks
    checkpoint_dir = os.path.join(exp_dir, 'checkpoints/')
    checkpoint = ModelCheckpoint(checkpoint_dir, monitor='val_loss',
                                 mode='min', save_top_k=5, verbose=1)
    early_stopping = False
    if conf['training']['early_stop']:
        early_stopping = EarlyStopping(monitor='val_loss', patience=10,
                                       verbose=1)

    # Don't ask GPU if they are not available.
    if not torch.cuda.is_available():
        print('No available GPU were found, set gpus to None')
        conf['main_args']['gpus'] = None
    trainer = pl.Trainer(max_nb_epochs=conf['training']['epochs'],
                         checkpoint_callback=checkpoint,
                         early_stop_callback=early_stopping,
                         default_save_path=exp_dir,
                         gpus=conf['main_args']['gpus'],
                         distributed_backend='dp',
                         train_percent_check=1.0,  # Useful for fast experiment
                         gradient_clip_val=5.,)
    trainer.fit(system)

    best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
    with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
        json.dump(best_k, f, indent=0)