Example #1
0
def ComputeCorr(
    Bodies,
    direct='',
    nbins=250
):  #This Computes the correlation function for the bodies in the array Bodies.

    X = np.zeros((len(Bodies), 3))

    for i in range(len(Bodies)):

        X[i] = Bodies[i].position

    bins = np.logspace(-5, 2, int(nbins))

    corr = two_point(
        X, bins
    ) + 1  #This is where the two point correlation is computed and stored in an array named corr.

    DATA = np.array(
        [bins[1:], corr]
    ).T  # This array contains the correlation function data as (r,corr) points.

    DATA = DATA[~np.any(
        np.isnan(DATA),
        axis=1)]  # Removes nan's because curve_fit doesn't handle them well.

    np.savetxt(direct + 'Corr.txt', DATA, fmt='%f')

    # a = np.loadtxt('Corr.txt') # To load the data form text

    return DATA
Example #2
0
def tp_corr(out_count, rbin_N):
    path_dir = parent_dir + 'output/'
    if os.path.isfile(path_dir + 'particle_' + str(out_count) + '.npy'):
        out_data = np.load(path_dir + 'particle_' + str(out_count) + '.npy')
        out_info = np.load(path_dir + 'info_' + str(out_count) + '.npy',
                           allow_pickle=True).item()

        rbin = np.logspace(0.5, 2.5, num=rbin_N)

        posn = out_data[:, 1:4]
        corr = two_point(posn, rbin)

        print(np.shape(corr))
        print(corr)
        rbin = rbin[:-1]
        print(np.shape(rbin))

        plt.figure()
        plt.xscale('log')
        plt.yscale('log')
        plt.plot(rbin, corr)
        plt.title('With expansion: 20000 particles')
        plt.xlabel(r'r (in code units)')
        plt.ylabel(r'$\xi$(r)')
        plt.savefig(parent_dir + 'two_point_corr_' + str(out_count) + '.png')
        plt.close()
Example #3
0
 def ac_astroML(self):
     '''from two_point_angular() in astroML/correlation.py'''
     from astroML.correlation import two_point, ra_dec_to_xyz, angular_dist_to_euclidean_dist
     # 3d project
     data = np.asarray(ra_dec_to_xyz(self.gal_ra, self.gal_dec),
                       order='F').T
     data_R = np.asarray(ra_dec_to_xyz(self.ran_ra, self.ran_dec),
                         order='F').T
     # convert spherical bins to cartesian bins
     bins = 10**np.linspace(np.log10(1. / 60.), np.log10(6), 16)
     bins_transform = angular_dist_to_euclidean_dist(bins)
     w = two_point(data,
                   bins_transform,
                   method='landy-szalay',
                   data_R=data_R)
     bin_centers = 0.5 * (bins[1:] + bins[:-1])
     return bin_centers, w
Example #4
0
def find_corr(ponds,random_fraction,bins):
    random_points = np.random.rand(np.shape(ponds)[0],np.shape(ponds)[1]) < random_fraction
    ponds_coordinates = np.array(np.nonzero(ponds*random_points)).T
    corr = two_point(ponds_coordinates, bins)
    loc = corr == corr
    
    C = corr[loc]
    d = bins[1:][loc]

    C = np.hstack([1.,C,0.])
    d = np.hstack([0.,d,np.inf])
    
    Cd_interp = interp1d(C,d,kind = 'linear')
    l0 = Cd_interp(np.exp(-1))
    
    return_corr = np.hstack([1.,corr,0.])
    return_dist = np.hstack([0.,bins[1:],np.inf])
    return return_corr,return_dist,l0
Example #5
0
N = 500
offset = 60.0
noise = 3.0
BAO = 20.0

for i in xrange(100):
    N1 = np.random.randint(N/10.0, N)
    N2 = np.random.randint(N/10.0, N)
    r1 = (np.random.random(N1)-0.5)*noise* np.random.random()
    r2 = BAO + (np.random.random(N2)-0.5)*noise* np.random.random()
    x_off = 2*offset*(np.random.random() - 0.5)
    y_off = 2*offset*(np.random.random() - 0.5)
    z_off = 2*offset*(np.random.random() - 0.5)
    theta1 = np.random.random(N1) * np.pi
    phi1 = np.random.random(N1) * 2 * np.pi
    c1 = np.vstack( (r1*np.sin(theta1)*np.cos(phi1)+x_off, r1*np.sin(theta1)*np.sin(phi1)+y_off, r1*np.cos(theta1)+z_off ))
    theta2 = np.random.random(N2) * np.pi
    phi2 = np.random.random(N2) * 2 * np.pi
    c2 = np.vstack( (r2*np.sin(theta2)*np.cos(phi2)+x_off, r2*np.sin(theta2)*np.sin(phi2)+y_off, r2*np.cos(theta2)+z_off ))
    c = np.hstack( (c,c1,c2) )


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
np.random.shuffle(c)
ax.scatter(c[0][:], c[1][:], c[2][:])
plt.show()
cor = two_point(c.T, np.linspace(int(BAO)/10.0, int(BAO)*2, int(BAO)*2), method='landy-szalay')
plt.plot(cor)
plt.show()
Example #6
0
def two_point_corr(xyz, xyz_rand):
    bins = np.linspace(bin_min, bin_max, nbins)
    corr = cor.two_point(xyz.T, bins, method='landy-szalay', data_R = xyz_rand.T)
    print corr
    s_ls = bins[:-1]+(bin_max-bin_min)/(2*nbins)
    plt.plot(s_ls, s_ls**2 * corr)
def two_point_corr(xyz):
    bins = np.linspace(0, 1, 51)
    corr = cor.two_point(xyz.T, bins, method='landy-szalay')
    print corr
    plt.plot(corr)
Example #8
0
def new_bootstrap_two_point_angular(ra_G,dec_G, bins, method='standard',\
                                    ra_R=None,dec_R=None, Nbootstraps=10,\
                                    random_state=None):
    """Angular two-point correlation function

    A separate function is needed because angular distances are not
    euclidean, and random sampling needs to take into account the
    spherical volume element.

    Parameters
    ----------
    ra_G, dec_G : array_like
        Observed galaxy ra,dec
    bins : array_like
        bins within which to compute the 2-point correlation.
        shape = Nbins + 1
    method : string
        "standard" or "landy-szalay".
    ra_R, dec_R : array_like
        Random catlogue of ra,dec
    Nbootstraps : int
        number of bootstrap resamples

    Returns
    -------
    corr : ndarray
        the estimate of the correlation function within each bin
        shape = Nbins
    dcorr : ndarray
        error estimate on dcorr (sample standard deviation of
        bootstrap resamples)
    bootstraps : ndarray
        The full sample of bootstraps used to compute corr and dcorr
    """
    data = np.asarray(ra_dec_to_xyz(ra_G, dec_G), order='F').T
    n_samples, n_features = data.shape
    if random_state is None:
        rng= np.random.RandomState()

    if ra_R is None or dec_R is None:
        print('Creating random sample')
        data_R = data.copy()
        for i in range(n_features - 1):
            rng.shuffle(data_R[:, i])
    else:
        data_R = np.asarray(ra_dec_to_xyz(ra_R, dec_R), order='F').T
        if (data_R.ndim != 2) or (data_R.shape[-1] != n_features):
            raise ValueError('data_R must have same n_features as data')
    bins = np.asarray(bins)
    Nbins = len(bins) - 1

    if method not in ['standard', 'landy-szalay']:
        raise ValueError("method must be 'standard' or 'landy-szalay'")

    if bins.ndim != 1:
        raise ValueError("bins must be a 1D array")

    if data.ndim == 1:
        data = data[:, np.newaxis]
    elif data.ndim != 2:
        raise ValueError("data should be 1D or 2D")

    # convert spherical bins to cartesian bins
    bins_transform = angular_dist_to_euclidean_dist(bins)

    bootstraps = []

    # Bootstrap sample data_R, hold data fixed 
    #R_samples, R_features = data_R.shape
    #for i in range(Nbootstraps):
    #    # Sample with replacement
    #    #inds= rng.randint(R_samples, size=R_samples) #np.random.randint
    #    ind = rng.randint(0, R_samples, R_samples)
    #    new_R= data_R[ind,:]
    #    print('WARNING: look in code, is new_R shape correct?')

    #    bootstraps.append(two_point(data, bins_transform, method=method,
    #                                data_R=new_R, random_state=rng))
    # Now, bootstrap sample data, hold data_R 
    for i in range(Nbootstraps):
        print('Computing bootstrap: %d' % (i+1,))
        ind = rng.randint(0, n_samples, n_samples)
        new_G= data[ind,:]
        bootstraps.append(two_point(new_G, bins_transform, method=method,
                                    data_R=data_R, random_state=rng))

    bootstraps = np.asarray(bootstraps)
    corr = np.mean(bootstraps, 0)
    corr_err = np.std(bootstraps, 0, ddof=1)

    return corr, corr_err, bootstraps