def test_input_output(): tm = TemplateModel('__test') tm.alpha = -0.95 tm.beta = -2.23 fake_source = PointSource("test", ra=0.0, dec=0.0, spectral_shape=tm) fake_model = Model(fake_source) clone = clone_model(fake_model) assert clone.get_number_of_point_sources() == 1 assert tm.data_file == clone.test.spectrum.main.shape.data_file assert clone.test.spectrum.main.shape.alpha.value == tm.alpha.value assert clone.test.spectrum.main.shape.beta.value == tm.beta.value xx = np.linspace(1, 10, 100) assert np.allclose(clone.test.spectrum.main.shape(xx), fake_model.test.spectrum.main.shape(xx)) # Test pickling dump = pickle.dumps(clone) clone2 = pickle.loads(dump) assert clone2.get_number_of_point_sources() == 1 assert tm.data_file == clone2.test.spectrum.main.shape.data_file assert np.allclose(clone2.test.spectrum.main.shape(xx), fake_model.test.spectrum.main.shape(xx)) # Test pickling with other functions new_shape = tm * Powerlaw() new_shape.index_2 = -2.256 dump2 = pickle.dumps(new_shape) clone3 = pickle.loads(dump2) assert clone3.index_2.value == new_shape.index_2.value # Now save to disk and reload fake_source2 = PointSource("test", ra=0.0, dec=0.0, spectral_shape=new_shape) fake_model2 = Model(fake_source2) fake_model2.save("__test.yml", overwrite=True) # Now try to reload reloaded_model = load_model("__test.yml") assert reloaded_model.get_number_of_point_sources() == 1 assert np.allclose(fake_model2.test.spectrum.main.shape(xx), reloaded_model.test.spectrum.main.shape(xx)) os.remove("__test.yml")
def test_template_factory(): mo = get_comparison_function() energies = np.logspace(1, 3, 50) t = TemplateModelFactory('__test', 'A test template', energies, ['alpha', 'xp', 'beta']) alpha_grid = np.linspace(-1.5, 1, 15) beta_grid = np.linspace(-3.5, -1.6, 15) xp_grid = np.logspace(1, 3, 20) t.define_parameter_grid('alpha', alpha_grid) t.define_parameter_grid('beta', beta_grid) t.define_parameter_grid('xp', xp_grid) for a in alpha_grid: for b in beta_grid: for xp in xp_grid: mo.alpha = a mo.beta = b mo.xp = xp t.add_interpolation_data(mo(energies), alpha=a, xp=xp, beta=b) print("Data has been prepared") t.save_data(overwrite=True) tm = TemplateModel('__test1D') tm(energies)
def test_template_function(): tm = TemplateModel('__test') mo = get_comparison_function() new_alpha_grid = np.linspace(-1.5, 1, 20) new_beta_grid = np.linspace(-3.5, -1.6, 20) new_xp_grid = np.logspace(1, 3, 30) new_energies = np.logspace(1, 3, 40) tm.K = 1 mo.K = 1 for a in new_alpha_grid: for b in new_beta_grid: for xp in new_xp_grid: mo.alpha = a mo.beta = b mo.xp = xp tm.alpha = a tm.beta = b tm.xp = xp res1 = mo(new_energies) res2 = tm(new_energies) deltas = np.abs((res2 - res1) / res1) idx = deltas > 0.1 if np.any(idx): raise AssertionError("Interpolation precision @ %s is %s, " "worse than 10 percent, " "with parameters %s!" % (new_energies[idx], deltas[idx], [a,b,xp]))
def test_template_function(): tm = TemplateModel('__test') mo = get_comparison_function() new_alpha_grid = np.linspace(-1.5, 1, 20) new_beta_grid = np.linspace(-3.5, -1.6, 20) new_xp_grid = np.logspace(1, 3, 30) new_energies = np.logspace(1, 3, 40) tm.K = 1 mo.K = 1 for a in new_alpha_grid: for b in new_beta_grid: for xp in new_xp_grid: mo.alpha = a mo.beta = b mo.xp = xp tm.alpha = a tm.beta = b tm.xp = xp res1 = mo(new_energies) res2 = tm(new_energies) deltas = np.abs((res2 - res1) / res1) idx = deltas > 0.1 if np.any(idx): raise AssertionError( "Interpolation precision @ %s is %s, " "worse than 10 percent, " "with parameters %s!" % (new_energies[idx], deltas[idx], [a, b, xp]))