def _calc_planck_mean_opacity(self):
        """Calculate the Planck-mean total opacity for each grid cell.

        See, e.g. Mihalas and Mihalas 1984, for details on the averaging
        process.

        Returns
        -------
        kappa_planck_mean : astropy.units.Quantity ndarray
            Planck-mean opacity (shape Nshells)
        """

        kappa_planck_mean = np.zeros(self.nshells) / units.cm

        for i in xrange(self.nshells):
            delta_nu = (self.nu_bins[1:] - self.nu_bins[:-1])
            T = self.mdl.plasma.t_rad[i]

            tmp = (blackbody_nu(self.nu_bins[:-1], T) * delta_nu *
                   self.kappa_tot[:, 0]).sum()
            tmp /= (blackbody_nu(self.nu_bins[:-1], T) * delta_nu).sum()

            kappa_planck_mean[i] = tmp

        return kappa_planck_mean.to("1/cm")
Example #2
0
    def _calc_planck_mean_opacity(self):
        """Calculate the Planck-mean total opacity for each grid cell.

        See, e.g. Mihalas and Mihalas 1984, for details on the averaging
        process.

        Returns
        -------
        kappa_planck_mean : astropy.units.Quantity ndarray
            Planck-mean opacity (shape Nshells)
        """

        kappa_planck_mean = np.zeros(self.nshells) / units.cm

        for i in xrange(self.nshells):
            delta_nu = (self.nu_bins[1:] - self.nu_bins[:-1])
            T = self.mdl.plasma.t_rad[i]

            tmp = (blackbody_nu(self.nu_bins[:-1], T) * delta_nu *
                   self.kappa_tot[:, 0]).sum()
            tmp /= (blackbody_nu(self.nu_bins[:-1], T) * delta_nu).sum()

            kappa_planck_mean[i] = tmp

        return kappa_planck_mean.to("1/cm")
Example #3
0
def mockobj(nx, temp):  #Create a mock 1D spectrum
    x = np.arange(nx)
    l = x * 10 + 5000
    wave = l * u.AA  #u.AA means Angstrom
    temperature = temp * u.K
    flux = blackbody_nu(wave, temperature).value
    return flux
Example #4
0
    def setup_grid(self, wavelength=656*u.nm):
        # use HEALPIX to get evenly sized tiles
        NSIDE = hp.npix2nside(self.ntiles)

        colat, lon = hp.pix2ang(NSIDE, np.arange(0, self.ntiles))
        # co-latitude
        theta_values = u.Quantity(colat, unit=u.rad)
        # longitude
        phi_values = u.Quantity(lon, unit=u.rad)

        # the following formulae use the Roche approximation and assume
        # solid body rotation
        # solve for radius of rotating star at these co-latitudes
        if self.distortion:
            radii = self.radius*np.array([newton(surface, 1.01, args=(self.omega, x)) for x in theta_values])
        else:
            radii = self.radius*np.ones(self.ntiles)

        # and effective gravities
        geff = np.sqrt((-const.G*self.mass/radii**2 + self.Omega**2 * radii * np.sin(theta_values)**2)**2 +
                       self.Omega**4 * radii**2 * np.sin(theta_values)**2 * np.cos(theta_values)**2)

        # now make a ntiles sized CartesianRepresentation of positions
        self.tile_locs = SphericalRepresentation(phi_values,
                                                 90*u.deg-theta_values,
                                                 radii).to_cartesian()

        # normal to tile is the direction of the derivate of the potential
        # this is the vector form of geff above
        # the easiest way to express it is that it differs from (r, theta, phi)
        # by a small amount in the theta direction epsilon
        x = radii/self.radius
        a = 1./x**2 - (8./27.)*self.omega**2 * x * np.sin(theta_values)**2
        b = np.sqrt(
                (-1./x**2 + (8./27)*self.omega**2 * x * np.sin(theta_values)**2)**2 +
                ((8./27)*self.omega**2 * x * np.sin(theta_values) * np.cos(theta_values))**2
            )
        epsilon = np.arccos(a/b)
        self.tile_dirs = UnitSphericalRepresentation(phi_values,
                                                     90*u.deg - theta_values - epsilon)
        self.tile_dirs = self.tile_dirs.to_cartesian()

        # and ntiles sized arrays of tile properties
        tile_temperatures = 2000.0 * u.K * (geff / geff.max())**self.beta

        # fluxes, not accounting for limb darkening
        self.tile_scales = np.ones(self.ntiles)
        self.tile_fluxes = blackbody_nu(wavelength, tile_temperatures)

        # tile areas
        spher = self.tile_locs.represent_as(SphericalRepresentation)
        self.tile_areas = spher.distance**2 * hp.nside2pixarea(NSIDE) * u.rad * u.rad

        omega_vec = CartesianRepresentation(
            u.Quantity([0.0, 0.0, self.Omega.value],
                       unit=self.Omega.unit)
        )
        # get velocities of tiles
        self.tile_velocities = cross(omega_vec, self.tile_locs)
Example #5
0
def test_monochromatic_inverse_compton(particle_dists):
    """
    test IC monochromatic against khangulyan et al.
    """
    from ..models import InverseCompton, PowerLaw

    PL = PowerLaw(1 / u.eV, 1 * u.TeV, 3)

    # compute a blackbody spectrum with 1 eV/cm3 at 30K
    from astropy.analytic_functions import blackbody_nu
    Ephbb = np.logspace(-3.5, -1.5, 100) * u.eV
    lambdabb = Ephbb.to('AA', equivalencies=u.equivalencies.spectral())
    T = 30 * u.K
    w = 1 * u.eV / u.cm**3
    bb = (blackbody_nu(lambdabb, T) * 2 * u.sr / c.cgs / Ephbb /
          hbar).to('1/(cm3 eV)')
    Ebbmax = Ephbb[np.argmax(Ephbb**2 * bb)]

    ar = (4 * sigma_sb / c).to('erg/(cm3 K4)')
    bb *= (w / (ar * T**4)).decompose()

    eopts = {'Eemax': 10000 * u.GeV, 'Eemin': 10 * u.GeV, 'nEed': 1000}
    IC_khang = InverseCompton(PL, seed_photon_fields=[['bb', T, w]], **eopts)
    IC_mono = InverseCompton(PL,
                             seed_photon_fields=[['mono', Ebbmax, w]],
                             **eopts)
    IC_bb = InverseCompton(PL,
                           seed_photon_fields=[['bb2', Ephbb, bb]],
                           **eopts)
    IC_bb_ene = InverseCompton(
        PL, seed_photon_fields=[['bb2', Ephbb, Ephbb**2 * bb]], **eopts)

    Eph = np.logspace(-1, 1, 3) * u.GeV

    assert_allclose(IC_khang.sed(Eph).value, IC_mono.sed(Eph).value, rtol=1e-2)
    assert_allclose(IC_khang.sed(Eph).value, IC_bb.sed(Eph).value, rtol=1e-2)
    assert_allclose(IC_khang.sed(Eph).value,
                    IC_bb_ene.sed(Eph).value,
                    rtol=1e-2)
Example #6
0
def los_to_dustpol(los,Tdust=18,nu0=353,deltas=1.):
    from astropy.analytic_functions import blackbody_lambda, blackbody_nu
    Bnu=blackbody_nu(nu0*u.GHz,Tdust*u.K)
    sigma_353=1.2e-26*u.cm**2 # Planck 2013 results XI. by Planck Collaboration XI (2014)
    p0=0.2
    ds=deltas*c.pc
    
    Bperp2=los['magnetic_field_X']**2+los['magnetic_field_Y']**2
    B2=Bperp2+los['magnetic_field_Z']**2
    cos2phi=(los['magnetic_field_X']**2-los['magnetic_field_Y']**2)/Bperp2
    sin2phi=los['magnetic_field_X']*los['magnetic_field_Y']/Bperp2
    cosgam2=Bperp2/B2

    nH=los['density']/u.cm**3
    dtau=(sigma_353*nH*ds).cgs
    tau=dtau.cumsum()
 #   print nH.sum()*ds.cgs,tau[-1], np.exp(-tau[-1])

    I=Bnu*(1.0-p0*(cosgam2-2./3.0))*dtau#*np.exp(-tau)
    Q=p0*Bnu*cos2phi*cosgam2*dtau#*np.exp(-tau)
    U=p0*Bnu*sin2phi*cosgam2*dtau#*np.exp(-tau)
    
    return I.sum().to('MJy/sr'),Q.sum().to('MJy/sr'),U.sum().to('MJy/sr')
Example #7
0
def test_monochromatic_inverse_compton(particle_dists):
    """
    test IC monochromatic against khangulyan et al.
    """
    from ..models import InverseCompton, PowerLaw

    PL = PowerLaw(1 / u.eV, 1 * u.TeV, 3)

    # compute a blackbody spectrum with 1 eV/cm3 at 30K
    from astropy.analytic_functions import blackbody_nu
    Ephbb = np.logspace(-3.5, -1.5, 100) * u.eV
    lambdabb = Ephbb.to('AA', equivalencies=u.equivalencies.spectral())
    T = 30 * u.K
    w = 1 * u.eV / u.cm**3
    bb = (blackbody_nu(lambdabb, T) * 2 * u.sr / c.cgs
            / Ephbb / hbar).to('1/(cm3 eV)')
    Ebbmax = Ephbb[np.argmax(Ephbb**2 * bb)]

    ar = (4 * sigma_sb / c).to('erg/(cm3 K4)')
    bb *= (w / (ar * T**4)).decompose()

    eopts = {'Eemax': 10000 * u.GeV, 'Eemin': 10 * u.GeV, 'nEed': 1000}
    IC_khang = InverseCompton(PL, seed_photon_fields=[['bb', T, w]], **eopts)
    IC_mono = InverseCompton(PL,
                             seed_photon_fields=[['mono', Ebbmax, w]],
                             **eopts)
    IC_bb = InverseCompton(PL, seed_photon_fields=[['bb2', Ephbb, bb]], **eopts)
    IC_bb_ene = InverseCompton(PL,
                    seed_photon_fields=[['bb2', Ephbb, Ephbb**2 * bb]], **eopts)

    Eph = np.logspace(-1, 1, 3) * u.GeV

    assert_allclose(IC_khang.sed(Eph).value, IC_mono.sed(Eph).value, rtol=1e-2)
    assert_allclose(IC_khang.sed(Eph).value, IC_bb.sed(Eph).value, rtol=1e-2)
    assert_allclose(IC_khang.sed(Eph).value, IC_bb_ene.sed(Eph).value,
                    rtol=1e-2)
Example #8
0
 def calc_md_tlt(self, nu = 340.*u.GHz, k340 = 3.37):
     self.k340 = k340
     self.boltz_tlt = np.ones(self.nstars)
     self.boltz_tlt_uvg = np.ones(self.nstars)
     self.boltz_tlt_lam = np.ones(self.nstars)
     self.boltz_ta = np.ones(self.nstars)
     self.boltz_tvdp = np.ones(self.nstars)
     for i in range(self.nstars):
         self.boltz_tlt[i] = blackbody_nu(nu, self.mytable[i]['Tlt']).value
         self.boltz_tlt_uvg[i] = blackbody_nu(nu, self.mytable[i]['Tlt_uvg']).value
         self.boltz_tlt_lam[i] = blackbody_nu(nu, self.mytable[i]['Tlt_lam']).value
         self.boltz_ta[i] = blackbody_nu(nu, self.mytable[i]['Ta']).value
         self.boltz_tvdp[i] = blackbody_nu(nu, self.mytable[i]['Tvdp']).value
     self.boltz_20k = np.zeros(self.nstars)+blackbody_nu(nu, 20. * u.K).value
     
     #
     self.mlt, self.mlt_ep, self.mlt_em = self.get_mass(self.boltz_tlt)
     self.mlt_uvg, self.mlt_uvg_ep, self.mlt_uvg_em = self.get_mass(self.boltz_tlt_uvg)
     self.mlt_lam, self.mlt_lam_ep, self.mlt_lam_em = self.get_mass(self.boltz_tlt_lam)
     self.mta, self.mta_ep, self.mta_em = self.get_mass(self.boltz_ta)
     self.mtvdp, self.mtvdp_ep, self.mtvdp_em = self.get_mass(self.boltz_tvdp)
     self.m20k, self.m20k_ep, self.m20k_em = self.get_mass(self.boltz_20k)
Example #9
0
def bbody(T,nu):
    """
    Blackbody flux for a given temperature and frequency erg / (cm2 Hz s sr) (cgs system)
    """
    return blackbody_nu(nu, T).cgs.value
 def create_flux(self):
     # use astropy analytic function and astropy.units to specify microns and K.
     # flux is in erg cm-2 s-1 hz-1 sr-1, but will be scaled by normalization.
     flux = blackbody_nu(self.wave * u.micron, self.temp * u.K)
     return flux.value
Example #11
0
 def create_flux(self):
     # use astropy analytic function and astropy.units to specify microns and K.
     # flux is in erg cm-2 s-1 hz-1 sr-1, but will be scaled by normalization.
     flux = blackbody_nu(self.wave * u.micron, self.temp * u.K)
     return flux.value
Example #12
0
 def testBlack_Body(self):
     astropy = blackbody_nu(90.e9, 100.) / blackbody_nu(30.e9, 100.)
     pysm = components.black_body(90., 30., 100.)
     self.assertAlmostEqual(astropy, pysm)
Example #13
0
T_dust = 15 * u.K
kappa_dust = 0.6 * u.cm**2 / u.g

# Assume the Canonical value here
dust_to_gas = 100.

beamsize = 1 * u.arcsec

# Assuming circular here. Drop units to avoid 'beam' units in intensity
beamarea = (np.pi * beamsize**2).to(u.sr)

# In mJy/bm, but astropy isn't decomposing automatically
intensity = (253.54 * 1e-3) * 1e-26 * u.erg / (u.s * u.Hz * u.cm**2)

intensity = intensity / beamarea

Sigma_gas = (dust_to_gas / kappa_dust) * \
    (intensity / blackbody_nu(nu, T_dust))

Sigma_gas = Sigma_gas.to(u.Msun / u.pc**2)

# Multiply by physical beamwidth size
# In the case of M33, 1" = 4 pc
phys_beamsize = (4 * u.pc)
phys_beamarea = (np.pi * phys_beamsize**2)

dustmass = Sigma_gas * phys_beamarea

print "Mass Surface Density: %s" % (Sigma_gas)
print "Mass in beam: %s" % (dustmass)
Example #14
0
 def testBlack_Body(self):
     astropy = blackbody_nu(90.e9, 100.) / blackbody_nu(30.e9, 100.)
     pysm = components.black_body(90., 30., 100.)
     self.assertAlmostEqual(astropy, pysm)
Example #15
0
T_dust = 15 * u.K
kappa_dust = 0.6 * u.cm**2/u.g

# Assume the Canonical value here
dust_to_gas = 100.

beamsize = 1 * u.arcsec

# Assuming circular here. Drop units to avoid 'beam' units in intensity
beamarea = (np.pi * beamsize ** 2).to(u.sr)

# In mJy/bm, but astropy isn't decomposing automatically
intensity = (253.54 * 1e-3) * 1e-26 * u.erg/(u.s * u.Hz * u.cm**2)

intensity = intensity / beamarea

Sigma_gas = (dust_to_gas / kappa_dust) * \
    (intensity / blackbody_nu(nu, T_dust))

Sigma_gas = Sigma_gas.to(u.Msun/u.pc**2)

# Multiply by physical beamwidth size
# In the case of M33, 1" = 4 pc
phys_beamsize = (4 * u.pc)
phys_beamarea = (np.pi*phys_beamsize**2)

dustmass = Sigma_gas * phys_beamarea

print "Mass Surface Density: %s" % (Sigma_gas)
print "Mass in beam: %s" % (dustmass)