Example #1
0
def ln_likelihood_2d(mu_obs, sig_obs, z_vector, theta):
    #print (h)
    cosmo = LambdaCDM(Om0=theta[0], Ode0=theta[1], H0=100 * h)
    mu_pred = cosmo.distmod(z_vector).value
    #print ('pred', )
    chi_2 = np.sum(np.power(((mu_obs - mu_pred) / sig_obs), 2.0))
    return (-chi_2 / 2.0)
def lumdis(z, key):
    Ho = cosmology[key].H  #hubble constant
    mo = cosmology[key].Om  #matter
    l = cosmology[key].Ol  #dark energyH
    k = cosmology[key].Ok  #curvature
    cos = LambdaCDM(H0=Ho, Om0=mo, Ode0=l)  #Ok0 = k should work but it doesn't
    return cos.luminosity_distance(z)
Example #3
0
def test_redshifts_from_comoving_density():

    from skypy.galaxy.redshift import redshifts_from_comoving_density
    from astropy.cosmology import LambdaCDM

    # random cosmology
    H0 = np.random.uniform(50, 100)
    Om = np.random.uniform(0.1, 0.9)
    Ol = np.random.uniform(0.1, 0.9)
    cosmo = LambdaCDM(H0=H0, Om0=Om, Ode0=Ol)

    # fixed comoving density of Ngal galaxies total
    Ngal = 1000
    redshift = np.arange(0.0, 2.001, 0.1)
    density = Ngal/cosmo.comoving_volume(redshift[-1]).to_value('Mpc3')
    fsky = 1.0

    # sample galaxies over full sky without Poisson noise
    z_gal = redshifts_from_comoving_density(redshift, density, fsky, cosmo, noise=False)

    # make sure number of galaxies is correct (no noise)
    assert np.isclose(len(z_gal), Ngal, atol=1, rtol=0)

    # test the distribution of the sample against the analytical CDF
    V_max = cosmo.comoving_volume(redshift[-1]).to_value('Mpc3')
    D, p = kstest(z_gal, lambda z: cosmo.comoving_volume(z).to_value('Mpc3')/V_max)
    assert p > 0.01, 'D = {}, p = {}'.format(D, p)
def NFW_fit(e, theta, Lambda, z, h=0.7):

    a = np.linspace(-10, 10, 100)
    x, y = np.meshgrid(a, a)

    q = (1. - e) / (1. + e)

    r = np.sqrt(q * (x**2) + (y**2) / q)

    # SIMET RELATION FOR M200
    M0 = (2.21e14) / h
    alpha = 1.33
    M200 = M0 * ((Lambda / 40.)**alpha)

    # Compute cosmological parameters
    cosmo = LambdaCDM(H0=h * 100, Om0=0.3, Ode0=0.7)
    H = cosmo.H(z).value / (1.0e3 * pc)  #H at z_pair s-1
    roc = (3.0 *
           (H**2.0)) / (8.0 * np.pi * G)  #critical density at z_pair (kg.m-3)
    roc_mpc = roc * ((pc * 1.0e6)**3.0)

    # Compute R_200
    R200 = r200_nfw(M200, roc_mpc)

    # S_nfw R_200
    S_nfw = SIGMA_nfw((r, sigma_c, z, h), R200)

    x_rot = (x * np.cos(t) + y * np.sin(t))
    y_rot = (-1. * x * np.sin(t) + y * np.cos(t))

    w = np.ones(len(x_rot[mask]))
    e, ang = momentos(x_rot[mask], y_rot[mask], w)

    return e, np.rad2deg(ang)
Example #5
0
def lumdis(z, key):
    Ho = cosmology[key].H
    mo = cosmology[key].Om
    deo = cosmology[key].Ode
    l = cosmology[key].Ok
    cos = LambdaCDM(H0=Ho, Om0=mo, Ode0=l)
    return cos.luminosity_distance(z)
Example #6
0
def get_circle_rad(reffile, inp):
    z = reffile['z']
    re_UV = reffile['hlr_f814w_kpc']
    re_opt = reffile['hlr_f160w_kpc']

    scalar_list = []

    for i in z:
        cosmo = LambdaCDM(H0=70 * u.km / u.s / u.Mpc,
                          Tcmb0=2.725 * u.K,
                          Om0=0.3,
                          Ode0=.7)
        scale = cosmo.kpc_proper_per_arcmin(i).to('kpc/arcsec')
        scalar = float(scale / (1.0 * (u.kpc / u.arcsec)))
        scalar_list.append(scalar)

    new_scale = []
    for i in scalar_list:
        a = (1 / 3600) * (1 / i)
        new_scale.append(a)

    UV_rad = []
    opt_rad = []

    if inp == 'UV':
        for i, j in zip(new_scale, re_UV):
            a = i * j
            UV_rad.append(a)
        return UV_rad

    if inp == 'opt':
        for i, j in zip(new_scale, re_opt):
            b = i * j
            opt_rad.append(b)
        return opt_rad
Example #7
0
class LambdaCDMBenchmarks:
    H0 = 65 * u.km / u.s / u.Mpc
    TCMB0 = 2.7 * u.K
    params = [
        LambdaCDM(H0, 0.6, 0.7, 0),
        LambdaCDM(H0, 0.25, 0.65, TCMB0, 3.04),
        LambdaCDM(H0, 0.6, 0.7, TCMB0, 4),
        LambdaCDM(H0, 0.4, 0.2, TCMB0, 3.04),
        FlatLambdaCDM(H0, 0.25, 0),
        FlatLambdaCDM(H0, 0.25, TCMB0, 3.04),
        FlatLambdaCDM(H0, 0.25, TCMB0, 3.04, [0.05, 0.1, 0.15] * u.eV)
    ]

    def setup(self, cosmo):
        self.cosmology = cosmo
        self.test_zs = np.linspace(0.1, 5.0, 200)

    def teardown(self, cosmo):
        del self.cosmology
        del self.test_zs

    def time_lumdist(self, cosmo):
        self.cosmology.luminosity_distance(self.test_zs)

    def time_age(self, cosmo):
        self.cosmology.age(self.test_zs)
Example #8
0
    def _init_from_params(self, H0, Omega_b0, Omega_dm0, Omega_k0):

        Om0 = Omega_b0 + Omega_dm0
        Ob0 = Omega_b0
        Ode0 = 1.0 - Om0 - Omega_k0

        self.be_cosmo = LambdaCDM(H0=H0, Om0=Om0, Ob0=Ob0, Ode0=Ode0)
Example #9
0
def calc_absmag(rmag, galZ, gmag, imag, h, O_matter, O_lambda):

    # Calculating the distance modulus
    cosmo = LambdaCDM(H0=h * 100, Om0=O_matter, Ode0=O_lambda)
    galDl = (cosmo.luminosity_distance(galZ).to('pc')).value
    DM = 5. * np.log10(galDl / 10.)

    # Calculating the K-corrections
    kcorfile = np.loadtxt('kcorrection_list.txt').T
    zbins = kcorfile[5]
    kparams = kcorfile[6:9]

    # Calculating the K-correction per redshift bin
    galKcor = np.zeros(len(galZ))
    for k in range(len(zbins)):

        zmask = (zbins[k] - 0.005 <= galZ) & (galZ < zbins[k] + 0.005)

        a, b, c = kparams[:, k]
        Kcor = a * (gmag - imag)**2 + b * (gmag - imag) + c

        galKcor[zmask] = Kcor[zmask]

    # Calculating the absolute magnitude
    rmag_abs = rmag - DM + galKcor

    return rmag_abs
Example #10
0
def z_angular_mpc(zmean):
    '''returns the minimum angular cut to be applied 
       in order to discard nonlinearities
    '''
    cosmo = LambdaCDM(H0=67, Om0=0.319, Ode0=0.681, Ob0=0.049)
    angle = cosmo.arcsec_per_kpc_comoving(zmean).value * 12000. / 60

    return angle
def scale_einstein_radius(z_lens, z_src, H0=70, Om0=0.3, Ode0=0.7):
    cosmo = LambdaCDM(H0=H0, Om0=Om0, Ode0=Ode0)
    d_ls = cosmo.angular_diameter_distance_z1z2(z_lens, z_src)
    d_s = cosmo.angular_diameter_distance_z1z2(0, z_src)

    d = d_ls / d_s

    return d.value
Example #12
0
def partial_profile(RA0, DEC0, Z, RIN, ROUT, ndots, h):

    ndots = int(ndots)

    cosmo = LambdaCDM(H0=100 * h, Om0=0.25, Ode0=0.75)
    dl = cosmo.angular_diameter_distance(Z).value
    KPCSCALE = dl * (((1.0 / 3600.0) * np.pi) / 180.0) * 1000.0

    delta = ROUT / (3600 * KPCSCALE)

    t0 = time.time()
    mask = (S.ra < (RA0 + delta)) & (S.ra > (RA0 - delta)) & (
        S.dec > (DEC0 - delta)) & (S.dec < (DEC0 + delta)) & (S.z_v >
                                                              (Z + 0.1))

    catdata = S[mask]

    ds = cosmo.angular_diameter_distance(catdata.z_v).value
    dls = cosmo.angular_diameter_distance_z1z2(Z, catdata.z_v).value

    BETA_array = dls / ds

    Dl = dl * 1.e6 * pc
    sigma_c = (((cvel**2.0) / (4.0 * np.pi * G * Dl)) *
               (1. / BETA_array)) * (pc**2 / Msun)

    rads, theta, test1, test2 = eq2p2(np.deg2rad(catdata.ra),
                                      np.deg2rad(catdata.dec), np.deg2rad(RA0),
                                      np.deg2rad(DEC0))

    r = np.rad2deg(rads) * 3600 * KPCSCALE

    e1 = catdata.gamma1
    e2 = -1. * catdata.gamma2

    #get tangential ellipticities
    et = (-e1 * np.cos(2 * theta) - e2 * np.sin(2 * theta)) * sigma_c

    k = catdata.kappa * sigma_c

    r = np.rad2deg(rads) * 3600 * KPCSCALE

    bines = np.logspace(np.log10(RIN), np.log10(ROUT), num=ndots + 1)
    dig = np.digitize(r, bines)

    SIGMA = []
    DSIGMA = []

    for nbin in range(ndots):
        mbin = dig == nbin + 1

        SIGMA = np.append(SIGMA, np.average(k[mbin]))
        DSIGMA = np.append(DSIGMA, np.average(k[mbin]))

    return [SIGMA, DSIGMA]
Example #13
0
    def setup(self):
        self.H0_true = 70
        self.omega_m_true = 0.3
        self._ok_true = 0.1
        self.cosmo = FlatLambdaCDM(H0=self.H0_true, Om0=self.omega_m_true, Ob0=0.05)
        self.cosmo_interp = CosmoInterp(cosmo=self.cosmo, z_stop=3, num_interp=100)
        self.cosmo_ok = LambdaCDM(H0=self.H0_true, Om0=self.omega_m_true, Ode0=1.0 - self.omega_m_true - self._ok_true)
        self.cosmo_interp_ok = CosmoInterp(cosmo=self.cosmo_ok, z_stop=3, num_interp=100)

        self.cosmo_ok_neg = LambdaCDM(H0=self.H0_true, Om0=self.omega_m_true, Ode0=1.0 - self.omega_m_true + self._ok_true)
        self.cosmo_interp_ok_neg = CosmoInterp(cosmo=self.cosmo_ok_neg, z_stop=3, num_interp=100)
Example #14
0
    def generate_model_data_vector(self, times, parameters):
        #        parameters = get_parameter_set()

        cosmo = LambdaCDM(H0=parameters[0],
                          Om0=parameters[1],
                          Ode0=parameters[2],
                          Ob0=parameters[3],
                          Tcmb0=2.725)
        model_data_vector = cosmo.age(times).value
        #not keeping units here

        return model_data_vector
Example #15
0
def test_redshifts_from_comoving_density():

    from skypy.galaxy.redshift import redshifts_from_comoving_density
    from astropy.cosmology import LambdaCDM
    from astropy import units

    # random cosmology
    H0 = np.random.uniform(50, 100)
    Om = np.random.uniform(0.1, 0.9)
    Ol = np.random.uniform(0.1, 0.9)
    cosmo = LambdaCDM(H0=H0, Om0=Om, Ode0=Ol)

    # fixed comoving density of Ngal galaxies total
    Ngal = 1000
    redshift = np.arange(0.0, 2.001, 0.1)
    density = Ngal / cosmo.comoving_volume(redshift[-1]).to_value('Mpc3')
    sky_area = 4 * np.pi * units.steradian

    # sample galaxies over full sky without Poisson noise
    z_gal = redshifts_from_comoving_density(redshift,
                                            density,
                                            sky_area,
                                            cosmo,
                                            noise=False)

    # make sure number of galaxies is correct (no noise)
    assert np.isclose(len(z_gal), Ngal, atol=1, rtol=0)

    # test the distribution of the sample against the analytical CDF
    V_max = cosmo.comoving_volume(redshift[-1]).to_value('Mpc3')
    D, p = kstest(z_gal,
                  lambda z: cosmo.comoving_volume(z).to_value('Mpc3') / V_max)
    assert p > 0.01, 'D = {}, p = {}'.format(D, p)

    # Test that an error is raised if sky_area has the wrong units
    sky_area = 1 * units.degree
    with pytest.raises(units.UnitsError):
        redshifts_from_comoving_density(redshift,
                                        density,
                                        sky_area,
                                        cosmo,
                                        noise=False)

    # Test that an error is raised if sky_area has no units
    sky_area = 1
    with pytest.raises(TypeError):
        redshifts_from_comoving_density(redshift,
                                        density,
                                        sky_area,
                                        cosmo,
                                        noise=False)
Example #16
0
def ln_likelihood_2d(mu_obs, inv_covmat, z_vector, theta, choice):
    if choice=='FL2':
        cosmo=FlatLambdaCDM(Om0=theta[0], H0=100*theta[1])
    if choice=='OL2':
        cosmo = LambdaCDM(H0=70, Om0=theta[0], Ode0=theta[1])
    if choice=='FW2':
        cosmo=FlatwCDM(H0=73.8, Om0=theta[0], w0=theta[1])
    if choice=='FW3':
        cosmo=FlatwCDM(Om0=theta[0], w0=theta[1], H0=100*theta[2])
    if choice=='OL3':
        cosmo=LambdaCDM(Om0=theta[0], Ode0=theta[1], H0=100*theta[2])
    mu_th=cosmo.distmod(z_vector).value
    r=(mu_obs-mu_th).reshape(-1, 1) #Check bracketing
    chi_2=np.sum(np.matmul(np.matmul(r.T, inv_covmat), r))
    return (-chi_2/2.0)
Example #17
0
def astropyify_ccl_cosmo(cosmoin):
    """ Given a CCL cosmology object, create an astropy cosmology object

    Parameters
    ----------
    cosmoin : astropy.cosmology.FlatLambdaCDM or pyccl.core.Cosmology
        astropy or CCL cosmology object

    Returns
    -------
    cosmodict : astropy.cosmology.LambdaCDM
        Astropy cosmology object

    Notes
    -----
    Need to replace:
    `import pyccl as ccl
    cosmo_ccl = ccl.Cosmology(Omega_c=0.27, Omega_b=0.045, h=0.67, A_s=2.1e-9, n_s=0.96)`
    with
    `from astropy.cosmology import FlatLambdaCDM
    astropy_cosmology_object = FlatLambdaCDM(H0=70, Om0=0.27, Ob0=0.045)
    cosmo_ccl = cclify_astropy_cosmo(astropy_cosmology_object)``
    """
    if isinstance(cosmoin, LambdaCDM):
        return cosmoin
    if isinstance(cosmoin, dict):
        omega_m = cosmoin['Omega_b'] + cosmoin['Omega_c']
        return LambdaCDM(H0=cosmoin['H0'],
                         Om0=omega_m,
                         Ob0=cosmoin['Omega_b'],
                         Ode0=1.0 - omega_m)
    raise TypeError(
        "Only astropy LambdaCDM objects or dicts can be converted to astropy.")
Example #18
0
    def __init__(self, h5file, verbose=True):
        """
        Tool to replicate functionality of `PhotoZ.show_fit` but with 
        data read from a stored HDF5 file rather than a "live" object
        """
        from astropy.cosmology import LambdaCDM

        self.h5file = h5file

        self.param = params_from_hdf5(h5file)

        photoz.PhotoZ.set_zgrid(self)
        self.NZ = len(self.zgrid)

        self.templates = templates_from_hdf5(h5file, verbose=verbose)
        self.NTEMP = len(self.templates)

        self.set_attrs_from_hdf5()

        self.set_template_error()

        self.cosmology = LambdaCDM(H0=self.param['H0'],
                                   Om0=self.param['OMEGA_M'],
                                   Ode0=self.param['OMEGA_L'],
                                   Tcmb0=2.725,
                                   Ob0=0.048)

        self.set_tempfilt()
Example #19
0
def time_est():

    max_only = True

    times = np.zeros(len(ndata))

    K = 10
    pimax = 40.  #Mpc/h

    rpmax = 40  #Mpc/h
    basisfunc = estimator.tophat
    rpbins = np.logspace(np.log10(0.1), np.log10(rpmax), K)
    cosmo = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7)
    wp = True

    for i in range(len(ndata)):

        nd = ndata[i]

        data1fn = '../../lss/mangler/samples/a0.6452_0001.v5_ngc_ifield_ndata{}.rdzw'.format(
            nd)
        rand1fn = '../../lss/mangler/samples/a0.6452_rand20x.dr12d_cmass_ngc_ifield_ndata{}.rdz'.format(
            nd)

        start1 = time.time()
        rps, wprp = run.run(data1fn, rand1fn, data1fn, rand1fn, pimax, rpmax,
                            basisfunc, K, cosmo, wp, rpbins)
        end1 = time.time()
        times[i] = end1 - start1

    time_arrs = [times]

    plot_times(time_arrs, ndata)
Example #20
0
def load_cosmology(H0 = 69.7, Ob0 = 0.0464, Om0 = 0.1138 / (69.7/100)**2, Ode0 = 0.721, \
                    Tcmb0 = 2.73, m_nu = 0):

    new_model = LambdaCDM(H0 = H0, Om0 = Om0, Ob0 = Ob0, Ode0 = Ode0, Tcmb0 = Tcmb0, \
                            m_nu = m_nu*u.eV)

    return new_model
Example #21
0
def test_cclify_astropy_cosmo():
    """ Unit tests for md.cllify_astropy_cosmo """
    # Make some base objects
    truth = {'H0': 70., 'Om0': 0.3, 'Ob0': 0.05}
    apycosmo_flcdm = FlatLambdaCDM(**truth)
    apycosmo_lcdm = LambdaCDM(Ode0=1.0 - truth['Om0'], **truth)
    cclcosmo = {
        'Omega_c': truth['Om0'] - truth['Ob0'],
        'Omega_b': truth['Ob0'],
        'h': truth['H0'] / 100.,
        'H0': truth['H0']
    }

    # Test for exception if missing baryon density (everything else required)
    missbaryons = FlatLambdaCDM(H0=truth['H0'], Om0=truth['Om0'])
    assert_raises(KeyError, md.cclify_astropy_cosmo, missbaryons)

    # Test output if we pass FlatLambdaCDM and LambdaCDM objects
    assert_equal(md.cclify_astropy_cosmo(apycosmo_flcdm), cclcosmo)
    assert_equal(md.cclify_astropy_cosmo(apycosmo_lcdm), cclcosmo)

    # Test output if we pass a CCL object (a dict right now)
    assert_equal(md.cclify_astropy_cosmo(cclcosmo), cclcosmo)

    # Test for exception if anything else is passed in
    assert_raises(TypeError, md.cclify_astropy_cosmo, 70.)
    assert_raises(TypeError, md.cclify_astropy_cosmo, [70., 0.3, 0.25, 0.05])
def general_fit(H0, Om, Ol, Ok=0):
    cozmol = LambdaCDM(H0=H0, Om0=Om,
                       Ode0=Ol)  #again, Ok0 = k should work but it doent

    def cosmol_x(row, z, err, cosmology):
        z = row[z]
        model = float(cosmology.luminosity_distance(z) / u.Mpc)
        x = ((row['dis_mpc'] - model)**2) / row[err]**2
        return x

    #makes a column with a name based off of the cosmology you are testing and produces indivitual values for the sum
    #format: 'x^2_H0_OM_OL_OK'
    current_column = 'x^2_%(H0)f_%(OM)f_%(OL)f_%(OK)f' % {
        'H0': H0,
        'OM': Om,
        'OL': Ol,
        'OK': Ok
    }

    full[current_column] = full.apply(
        lambda row: cosmol_x(row, 'z', 'dis_Ftab_err', cozmol), axis=1)
    full1[current_column] = full1.apply(
        lambda row: cosmol_x(row, 'redshift', 'dis_FTab_averr', cozmol),
        axis=1)

    full.loc['X_sum', current_column] = full[current_column].sum()
    full1.loc['X_sum', current_column] = full1[current_column].sum()

    return x_sum([full, full1], current_column)
Example #23
0
def print_close_cosmo():
    """Print cosmological functions for a close cosmology."""
    H0 = 70.
    Om0 = 0.27
    Ode0 = 0.7
    cosmo = LambdaCDM(H0=H0, Om0=Om0, Ode0=Ode0)

    print('================')
    print('Close cosmology:')
    print('================')
    print('H0={} [km/s/Mpc], Om0={}, Ode0={}, Orel0={}, Ok0={}\n'.format(
        H0, Om0, Ode0,
        cosmo.Ogamma(0.) + cosmo.Onu(0.), cosmo.Ok(0.)))

    redshifts = (0., 0.1, 10., 1000.)
    print_curves(redshifts, cosmo)
Example #24
0
def myloglike_H0(cube, ndim, nparams):
        H0 = cube[0]
        Om0 = cube[1]
        Ode0 = cube[2]

        cosmo = LambdaCDM(H0=H0, Om0=Om0, Ode0=Ode0)

        c = 299792458.0*1e-3
        vr_mean, vr_std = redshift*c, redshift_error*c
 
        dc = cosmo.comoving_distance(redshift).value
        prob = np.log(kde_eval_single(kdedir_dist,[dc])[0])

        if np.isnan(prob):
            prob = -np.inf

        return prob
Example #25
0
def test_astropyify_ccl_cosmo(modeling_data):
    """ Unit tests for astropyify_ccl_cosmo """
    # Make a bse object
    truth = {'H0': 70., 'Om0': 0.3, 'Ob0': 0.05}
    apycosmo_flcdm = FlatLambdaCDM(**truth)
    apycosmo_lcdm = LambdaCDM(Ode0=1.0-truth['Om0'], **truth)
    cclcosmo = {'Omega_c': truth['Om0']-truth['Ob0'], 'Omega_b': truth['Ob0'],
                'h': truth['H0']/100., 'H0': truth['H0']}
Example #26
0
def H0_to_theta(hubble, omega_nu, omnuh2, omega_m, ommh2, omega_c, omch2,
                omega_b, ombh2, omega_lambda, omlamh2):
    h = hubble / 100.
    if np.isnan(omnuh2):
        omnuh2 = omega_nu * h**2
    if np.isnan(omega_m):
        omega_m = ommh2 / h**2
    if np.isnan(omega_b):
        omega_b = ombh2 / h**2
    if np.isnan(omega_lambda):
        omega_lambda = omlamh2 / h**2
    if np.isnan(omega_c):
        omega_c = omch2 / h**2
    if np.isnan(omega_m):
        omega_m = omega_c + omega_b + omega_nu
    if np.isnan(omega_m):
        omega_m = (omch2 + ombh2 + omnuh2) / h**2

    if np.isnan([omnuh2, hubble, omega_m, omega_lambda, omega_b]).any():
        return np.nan

    m_nu = 93.14 * omnuh2 * units.eV
    cosmo = LambdaCDM(hubble,
                      omega_m,
                      omega_lambda,
                      m_nu=m_nu / 3,
                      Ob0=omega_b,
                      Tcmb0=2.7255,
                      Neff=3.046)

    ombh2 = cosmo.Ob0 * cosmo.h**2
    omdmh2 = cosmo.Om0 * cosmo.h**2

    zstar = 1048 * (1 + 0.00124 * ombh2**(-0.738)) * (
        1 + (0.0783 * ombh2**(-0.238) / (1 + 39.5 * ombh2**0.763)) *
        (omdmh2 + ombh2)**(0.560 / (1 + 21.1 * ombh2**1.81)))
    astar = 1 / (1 + zstar)
    rs = scipy.integrate.romberg(dsound_da,
                                 1e-8,
                                 astar,
                                 rtol=5e-5,
                                 args=(cosmo, ),
                                 divmax=10)  # in Mpc
    DA = cosmo.angular_diameter_distance(zstar).to("Mpc").value / astar
    return rs / DA
Example #27
0
    def __init__(self,
                 Om_L=0.68440,
                 Om_b=0.04911,
                 Om_c=0.26442,
                 H0=67.27,
                 Om_M=None,
                 Om_k=None,
                 **kwargs):
        """
        Default parameter values are Planck 2015 TT,TE,EE+lowP.
        (Table 4 of https://doi.org/10.1051/0004-6361/201525830)

        Parameters:
        -----------
        Om_L : float, Omega Lambda naught, default=0.68440
            cosmological constant energy density fraction at z=0

        Om_b : float, Omega baryon naught, default=0.04911
            baryon energy density fraction at z=0

        Om_c : float, Omega cold dark matter naught, default=0.26442
            cdm energy density fraction at z=0

        H0 : float, Hubble constant, default=67.31 km s-1 Mpc-1

        Om_M : float, Omega matter naught, default=None [optional]
            matter energy density faction at z=0

        Om_k : float, Omega curvature naught, default=None [optional]
            curvature energy density at z=0

        """
        # Setup parameters
        if Om_M is not None:
            if np.isclose(Om_b + Om_c, Om_M, atol=1e-5) is False:
                Om_b = Om_M * 0.156635
                Om_c = Om_M * 0.843364
        else:
            Om_M = Om_b + Om_c

        if Om_k is None:
            Om_k = 1 - Om_L - Om_M

        ### TODO add radiation component to class and to distance functions
        self.Om_L = Om_L
        self.Om_b = Om_b
        self.Om_c = Om_c
        self.Om_M = Om_M
        self.Om_k = Om_k
        self.H0 = H0
        self.h = self.H0 / 100.0

        self.params = ["Om_L", "Om_b", "Om_c", "Om_M", "Om_k", "H0"]

        if _astropy:
            self.lcdm = LambdaCDM(H0=self.H0, Om0=self.Om_M, Ode0=self.Om_L)
Example #28
0
def test_dxdz():
    # Default cosmology (Vanilla)
    Xz = cosm_xz(3.)
    np.isclose(Xz, 7.68841320742732)
    dxdz = cosm_xz(3., flg_return=1)
    np.isclose(dxdz, 3.5847294011983)
    # Open
    copen = LambdaCDM(H0=70., Om0=0.3, Ode0=0.)
    dxdz = cosm_xz(3., cosmo=copen, flg_return=1)
    np.isclose(dxdz, 2.90092902756)
Example #29
0
	def getHeader(self):
		
		header = Gadget2Header(ext._gadget2.getHeader(self.fp))
		header["files"] = [self.fp.name]

		header["w0"] = -1.0
		header["wa"] = 0.0
		header["comoving_distance"] = LambdaCDM(H0=header["h"]*100,Om0=header["Om0"],Ode0=header["Ode0"]).comoving_distance(header["redshift"]).to(u.kpc).value * header["h"]

		return header 
Example #30
0
    def __init__(self,
                 r,
                 M200=1.e14,
                 ellip=0.25,
                 z=0.2,
                 h=0.7,
                 misscentred=False,
                 s_off=0.4,
                 components=['t0', 't', 'tcos', 'xsin'],
                 verbose=True,
                 Yanmiss=False):
        """
        init method, it sets up all variables
        """

        if not isinstance(r, (np.ndarray)):
            r = np.array([r])

        self.r = r
        self.M200 = M200
        self.ellip = ellip
        self.z = z
        self.h = h
        self.misscentred = misscentred
        self.s_off = s_off
        self.components = components
        self.verbose = verbose
        self.Yanmiss = Yanmiss

        # Compute cosmological parameters
        self.cosmo = LambdaCDM(H0=self.h * 100, Om0=0.3, Ode0=0.7)
        # H at z_pair s-1
        self.H = self.cosmo.H(self.z).value / (1.0e3 * self.pc)
        # critical density at z_pair (kg.m-3)
        self.roc = (3.0 * (self.H**2.0)) / (8.0 * np.pi * self.G)
        self.roc_mpc = self.roc * ((self.pc * 1.0e6)**3.0)

        # Compute R_200
        self.R200 = profiles_fit.r200_nfw(self.M200, self.roc_mpc)

        # Scaling sigma_off
        self.s_off = self.s_off / self.h
	M_g = m_r - DM - delta_g + g_r - z_cal

	return M_g	 


## Read in the fits file
hdulist = pyfits.open('/hd0/Research/Clustering/Boss/dr11/dr11v2/cmass-dr11v2-N-Anderson.dat.fits')


## Uncomment the following line to view the info about the table
#print hdulist.info()

## Read the tabular portion of the fits file into the variable 'table'.  This assumes that the table of interest is located in extension 1 
table = hdulist[1].data

cosmo = LambdaCDM(H0=100, Om0=0.274, Ode0=0.726)

ra=table.field('RA')
dec=table.field('DEC')
redshift=table.field('Z')
fibcol=table.field('WEIGHT_CP')
poly=table.field('IPOLY')
sector=table.field('ISECT')
extinction=table.field('EXTINCTION')
extinction_r=extinction[:,3]
flux=table.field('MODELFLUX')
flux_r=flux[:,3]

M_g=Calculate_Magnitude(flux_r,extinction_r,redshift)

array=np.column_stack((ra,dec,redshift,fibcol,poly,M_g))
from astropy.cosmology import LambdaCDM
import astropy.cosmology
from astropy.io import fits
import numpy as np
import astropy.units as u

"""
    created arrays of the Spectra IDs for relations between data sets
    EpA data set contained calculated ages of the galaxies
"""

cat_ID = cat['BESTOBJID']
EpA = fits.getdata('~/EpA_Results.fits')


cosmo = LambdaCDM(H0=70, Om0=0.3, Ode0=0.7)

"""
    two sections below for converting the age data to Z values and GYrs so that they could be plotted
"""

sb_age_list_gyr=[]
sb_age_list_z = []
zrange = np.arange(0,1396)
for i in zrange:
    age = cosmo.age(cat_z[i])
    age_diff = age.value - (EpA['AGE'][i] / 1000)
    sb_age_list_gyr.append(age_diff * age.unit)
    if age_diff >= 0:
        sb_age_list_z.append(astropy.cosmology.z_at_value(cosmo.age, sb_age_list_gyr[i]))