Example #1
0
    def findSkyLevel(self):
        Psky = fm.array(
            self.data_sci['array'].copy().values /
            (self.data_sci['integtime'].copy().values)[:, None]).mean('ch')
        date = self.data_sci['date'].copy().values
        t_sci = np.array([s[:-4] for s in date], 'datetime64[us]')
        flag1 = t_sci < t_sci[-1]
        #flag2 = data_sci['bufpos'] == 'ON'

        flag = flag1  #& flag2

        model_sky = models.Polynomial1D(2)
        model_sky.c0 = 0.0
        model_sky.c1 = -1.0
        model_sky.c2 = 1.0
        pfit = fitting.LinearLSQFitter()
        opfit = fitting.FittingWithOutlierRemoval(pfit,
                                                  sigma_clip,
                                                  niter=15,
                                                  sigma=2.0)
        #fitted_sky = pfit(model_sky, t_sci[flag], Psky[flag])
        fitted_sky, filtered_data = opfit(model_sky, t_sci[flag] - t_sci[0],
                                          Psky[flag])
        #opfit = fitting.FittingWithOutlierRemoval(pfit, sigma_clip,niter=3, sigma=3.0)
        #fitted_sky,filtered_data = opfit(model_sky,t_sci[flag][~filtered_data],Psky[flag][~filtered_data])
        #print(filtered_data)
        #print(fitted_sky.c1,fitted_sky.c0)
        self.t_sci = t_sci
        self.fitted_sky = fitted_sky
        self.Psky = Psky
        self.flag = flag
        self.filtered_data = filtered_data
def fit_meanphot_vs_varphot_levmar(meanphot,
                                   varphot,
                                   nfr=5,
                                   itersigma=4.0,
                                   niter=5,
                                   mode='linear'):
    # does not currently work, using fit_meanphot_vs_varphot()

    if mode == 'linear':
        fit = fitting.LinearLSQFitter()
    elif mode == 'LevMar':
        fit = fitting.LevMarLSQFitter()

    # initialize the outlier removal fitter
    or_fit = fitting.FittingWithOutlierRemoval(fit,
                                               sigma_clip,
                                               niter=niter,
                                               sigma=itersigma)
    # initialize a linear model
    line_init = models.Linear1D()
    # fit the data with the fitter
    sigmask, fitted_line = or_fit(line_init, meanphot, varphot)
    slope = fitted_line.slope.value
    g1_iter = get_g1_from_slope_T_N(slope, N=nfr)

    if mode == 'LevMar':
        cov_diag = np.diag(or_fit.fit_info['param_cov'])
        print('cov diag:')
        print(cov_diag)

    return fitted_line, sigmask, g1_iter
Example #3
0
def fit_star2d_outlier_removal(x,
                               y,
                               z,
                               sigma=3.0,
                               niter=50,
                               guess=None,
                               bounds=None):
    """Star2D parameters: amplitude, x_mean,y_mean,stddev,saturation"""
    gg_init = Star2D()
    if guess is not None:
        for ip, p in enumerate(gg_init.param_names):
            getattr(gg_init, p).value = guess[ip]
    if bounds is not None:
        for ip, p in enumerate(gg_init.param_names):
            getattr(gg_init, p).min = bounds[0][ip]
            getattr(gg_init, p).max = bounds[1][ip]
    gg_init.saturation.fixed = True
    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        fit = fitting.LevMarLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit,
                                                   sigma_clip,
                                                   niter=niter,
                                                   sigma=sigma)
        # get fitted model and filtered data
        filtered_data, or_fitted_model = or_fit(gg_init, x, y, z)
        if parameters.VERBOSE: print or_fitted_model
        return or_fitted_model
Example #4
0
def fit_poly1d_outlier_removal(x, y, order=2, sigma=3.0, niter=3):
    gg_init = models.Polynomial1D(order)
    gg_init.c0.min = np.min(y)
    gg_init.c0.max = 2 * np.max(y)
    gg_init.c1 = 0
    gg_init.c2 = 0
    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        fit = fitting.LevMarLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit,
                                                   sigma_clip,
                                                   niter=niter,
                                                   sigma=sigma)
        # get fitted model and filtered data
        filtered_data, or_fitted_model = or_fit(gg_init, x, y)
        '''
        import matplotlib.pyplot as plt
        plt.figure(figsize=(8,5))
        plt.plot(x, y, 'gx', label="original data")
        plt.plot(x, filtered_data, 'r+', label="filtered data")
        plt.plot(x, or_fitted_model(x), 'r--',
                 label="model fitted w/ filtered data")
        plt.legend(loc=2, numpoints=1)
        plt.show()
        '''
        return or_fitted_model
Example #5
0
    def guide_star_seeing(subframe):
        # subframe = subframe - np.median(subframe)
        subframe = subframe - np.percentile(subframe,5)
        sub_frame_l = int(np.shape(subframe)[0])
        y, x = np.mgrid[:sub_frame_l, :sub_frame_l]

        # Fit with constant, bounds, tied x and y sigmas and outlier rejection:
        gaussian_init = models.Const2D(0.0) + models.Gaussian2D(subframe[int(sub_frame_l/2),int(sub_frame_l/2)],int(sub_frame_l/2),int(sub_frame_l/2),8/2.355,8/2.355,0)
        gaussian_init.x_stddev_1.min = 1.0/2.355
        gaussian_init.x_stddev_1.max = 20.0/2.355
        gaussian_init.y_stddev_1.min = 1.0/2.355
        gaussian_init.y_stddev_1.max = 20.0/2.355
        gaussian_init.y_stddev_1.tied = tie_sigma
        gaussian_init.theta_1.fixed = True
        fit_gauss = fitting.FittingWithOutlierRemoval(fitting.LevMarLSQFitter(),sigma_clip,niter=3,sigma=3.0)
        # gaussian, mask = fit_gauss(gaussian_init, x, y, subframe)
        gain = 8.21 #e per ADU
        read_noise = 2.43 #ADU
        weights = gain / np.sqrt(np.absolute(subframe)*gain + (read_noise*gain)**2) #1/sigma for each pixel
        gaussian, mask = fit_gauss(gaussian_init, x, y, subframe, weights)
        fwhm_x = 2.355*gaussian.x_stddev_1.value
        fwhm_y = 2.355*gaussian.y_stddev_1.value

        x_seeing = fwhm_x * 0.579
        y_seeing = fwhm_y * 0.579
        return(x_seeing,y_seeing)
Example #6
0
def color_corrections(aij_stars, aij_mags, apass_index, apass_color,
                      apass_R_mags, good_match):
    #Changing from huber to astropy fit
    # Create empty list for the corrections (slope and intercept)
    corrections = []
    #Create empy list for the error in the corrections
    fit_error = []
    all_Rminusr_error = []
    #loop over all images
    for idx in range(aij_mags.shape[1]):
        #create BminusV list
        BminusV = []
        #Create Rminusr list
        Rminusr = []
        #loop over the apass_index and the placement in the apass_index
        for aij_star, el in enumerate(apass_index):
            #check if the aij star has a corresponding apass match
            if good_match[aij_star]:
                #Make sure the aij stars magnitude in the image isn't friggin huge
                if aij_stars[aij_star].magnitude[idx] < 100:
                    #Add the color of that star (according to apass) to the bminusv list
                    BminusV.append(apass_color[el])
                    #add the difference between aijs magnitude and apass transformed magnitude to the Rminusr list
                    Rminusr.append(apass_R_mags[el] -
                                   aij_stars[aij_star].magnitude[idx])
                #No idea what this is meant to do
                #if Rminusr[-1] < 20 and idx == 0:
                #print(aij_star)

        Rminusr_new = np.array([d for d in Rminusr if d != 'masked'])
        BminusV_new = np.array(
            [b for b, d in zip(BminusV, Rminusr) if d != 'masked'])
        #Astropy Fit
        g_init = models.Polynomial1D(1)
        fit = fitting.LevMarLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit,
                                                   sigma_clip,
                                                   niter=3,
                                                   sigma=3.0)
        # get fitted model and filtered data
        filtered_data, or_fitted_model = or_fit(g_init, BminusV_new,
                                                Rminusr_new)
        fitted_model = fit(g_init, BminusV_new, Rminusr_new)
        #print(fitted_model)
        #append corrections data to list
        fit_list = [or_fitted_model.c1.value, or_fitted_model.c0.value]
        corrections.append(fit_list)

        plt.ylim(20, 21)
        plt.title(idx)
        plt.plot(BminusV_new, Rminusr_new, 'o')
        plt.plot(BminusV_new,
                 or_fitted_model(BminusV_new),
                 'g--',
                 label="model fitted w/ filtered data")
        plt.show()
        print(or_fitted_model.c1.value)
    return corrections, BminusV
Example #7
0
def fit_airy_2d(data, x=None, y=None, sigma_factor=0):
    """Fit an AiryDisk2D model to the data.

    Parameters
    ----------

    data: 2D float array
        should be a 2d array, the initial center is used to estimate
        the fit center
    x: float (optional)
        xcenter location
    y: float (optional)
        ycenter location
    sigma_factor: float (optional)
        If sigma_factor > 0 then clipping will be performed
        on the data during the model fit

    Returns
    -------
    The the fit model for Airy2D function

    """
    delta = int(len(data) / 2)  # guess the center
    ldata = len(data)

    if x is None:
        x = delta
    if y is None:
        y = delta
    fixed_pars = {"x_0": True, "y_0": True}  # hold these constant
    yy, xx = np.mgrid[:ldata, :ldata]

    # Initialize the fitter
    fitter = fitting.LevMarLSQFitter()
    if sigma_factor > 0:
        fit = fitting.FittingWithOutlierRemoval(fitter,
                                                sigma_clip,
                                                niter=3,
                                                sigma=sigma_factor)
    else:
        fit = fitter

    # AiryDisk2D(amplitude, x_0, y_0, radius) + constant
    model = (models.AiryDisk2D(
        np.max(data), x_0=x, y_0=y, radius=delta, fixed=fixed_pars) +
             models.Polynomial2D(c0_0=data.min(), degree=0))
    with warnings.catch_warnings():
        # Ignore model warnings for new_plot_window
        warnings.simplefilter('ignore')
        results = fit(model, xx, yy, data)

    if sigma_factor > 0:
        return results[1]
    else:
        return results
Example #8
0
def fit_gaussian_2d(data, sigma=3., theta=0., sigma_factor=0):
    """center the data  by fitting a 2d gaussian to the region.

    Parameters
    ----------

    data: 2D float array
        should be a 2d array, the initial center is used to estimate
        the fit center
    sigma: float (optional)
        The sigma value for the starting gaussian model
    theta: float(optional)
        The theta value for the starting gaussian model
    sigma_factor: float (optional)
        If sigma_factor > 0 then clipping will be performed
        on the data during the model fit

    Returns
    -------
    The full gaussian fit model, from which the center can be extracted

    """
    # use a smaller bounding box so that we are only fitting the local data
    delta = int(len(data) / 2)  # guess the center
    amp = data.max() - data.min()  # guess the amplitude
    ldata = len(data)
    yy, xx = np.mgrid[:ldata, :ldata]

    # Initialize the fitter
    fitter = fitting.LevMarLSQFitter()
    if sigma_factor > 0:
        fit = fitting.FittingWithOutlierRemoval(fitter,
                                                sigma_clip,
                                                niter=3,
                                                sigma=sigma_factor)
    else:
        fit = fitter

    # Gaussian2D(amp,xmean,ymean,xstd,ystd,theta) + a constant
    model = (models.Gaussian2D(amp, delta, delta, sigma, sigma, theta) +
             models.Polynomial2D(c0_0=data.min(), degree=0))
    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        results = fit(model, xx, yy, data)

    # previous yield amp, ycenter, xcenter, sigma, offset
    # if sigma clipping is used, results is a tuple of data, model
    if sigma_factor > 0:
        return results[1]
    else:
        return results
Example #9
0
def fit_poly2d_outlier_removal(x, y, z, order=2, sigma=3.0, niter=30):
    gg_init = models.Polynomial2D(order)
    gg_init.c0_0.min = np.min(z)
    gg_init.c0_0.max = 2 * np.max(z)
    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        fit = fitting.LevMarLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit,
                                                   sigma_clip,
                                                   niter=niter,
                                                   sigma=sigma)
        # get fitted model and filtered data
        filtered_data, or_fitted_model = or_fit(gg_init, x, y, z)
        return or_fitted_model
Example #10
0
def astropy_clipping_fit(x, row, variance):
    gauss_model = models.Gaussian1D() + models.Const1D()

    fit = fitting.LevMarLSQFitter()
    clipping_fit = fitting.FittingWithOutlierRemoval(fit,
                                                     sigma_clip,
                                                     niter=30,
                                                     sigma=15.0)

    # initialize fitters
    fit = fitting.LevMarLSQFitter()
    or_fit = fitting.FittingWithOutlierRemoval(fit,
                                               sigma_clip,
                                               niter=3,
                                               sigma=6.0)

    g_init = models.Gaussian1D(
        amplitude=np.max(row), mean=len(x) / 2,
        stddev=1.0) + models.Const1D(amplitude=np.min(row))
    filtered_data, or_fitted_model = or_fit(g_init,
                                            x,
                                            row,
                                            weights=1.0 / variance)
    return or_fitted_model.mean_0.value
def fit_meanphot_vs_varphot(meanphot, varphot, nfr=5, itersigma=4.0, niter=5):

    fit = fitting.LinearLSQFitter()
    # initialize the outlier removal fitter
    or_fit = fitting.FittingWithOutlierRemoval(fit,
                                               sigma_clip,
                                               niter=niter,
                                               sigma=itersigma)
    # initialize a linear model
    line_init = models.Linear1D()
    # fit the data with the fitter
    sigmask, fitted_line = or_fit(line_init, meanphot, varphot)
    slope = fitted_line.slope.value
    g1_iter = get_g1_from_slope_T_N(slope, N=nfr)

    return fitted_line, sigmask, g1_iter
Example #12
0
def fit_poly_n(data, deg=1, sigma_factor=0):
    """Fit a Polynomial 1D model to the data.

    Parameters
    ----------

    data: float array
        should be a 1d or 2d array
    deg: int
        The degree of polynomial to fit
    sigma_factor: float (optional)
        If sigma_factor > 0 then clipping will be performed
        on the data during the model fit

    Returns
    -------
    The the polynomial fit model for the function
    """
    if len(data) < deg + 1:
        raise ValueError("fit_poly_n: Need more data for fit")

    # define the model
    poly = models.Polynomial1D(deg)

    # set the axis range for fitting
    ax = np.arange(len(data))

    # define the fitter
    fitter = fitting.LinearLSQFitter()

    if sigma_factor > 0:
        fit = fitting.FittingWithOutlierRemoval(fitter,
                                                sigma_clip,
                                                sigma=sigma_factor,
                                                niter=3)
    else:
        fit = fitter

    try:
        result = fit(poly, ax, data)
    except ValueError:
        result = None

    if sigma_factor > 0:
        result = result[1]

    return result
Example #13
0
def fit_line_sigma_clip(x,
                        y,
                        yunc=None,
                        slope=1,
                        intercept=0,
                        niter=5,
                        sigma=3):
    '''
    INPUT
    * x - array of x values
    * y - array of y values

    OPTIONAL INPUT
    * yunc - uncertainty in y values
    * slope - intial guess for slope
    * intercept - intial guess for intercept
    * niter - number of sigma clipping iterations; default is 3
    * sigma - sigma to use in clipping; default is 3

    RETURNS
    * Linear1D model, with slope and intercept
      * you can get fitted y values with fitted_line(x)
    * mask - array indicating the points that were cut in sigma clipping process

    REFERENCES
    https://docs.astropy.org/en/stable/modeling/example-fitting-line.html
    '''
    if yunc is None:
        yunc = np.ones(len(y))
    # initialize a linear fitter
    fit = fitting.LinearLSQFitter()

    # initialize the outlier removal fitter
    or_fit = fitting.FittingWithOutlierRemoval(fit,
                                               sigma_clip,
                                               niter=niter,
                                               sigma=sigma)

    # initialize a linear model
    line_init = models.Linear1D(slope=slope, intercept=intercept)

    # fit the data with the fitter
    fitted_line, mask = or_fit(line_init, x, y, weights=1.0 / yunc)

    return fitted_line, mask
Example #14
0
def plot(filenames, Flat = True):
    time_table, counts_unique_table = tab(filenames)
    counts_unique = np.squeeze(np.array([counts_unique_table[k] for k in counts_unique_table.keys()]))
    time = np.squeeze(np.array([time_table[k] for k in time_table.keys()]))
    if Flat == True:      
        plt.figure()
        fit = fitting.LinearLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit, sigma_clip, niter=2, sigma=2.5)
        line_init = models.Linear1D()

        fitted_line, mask = or_fit(line_init, time, counts_unique)
        filtered_data = np.ma.masked_array(counts_unique, mask=mask)
        plt.plot(time, counts_unique, 'ko', fillstyle='none')
        plt.plot(time, filtered_data, 'ko')
        plt.plot(time, fitted_line(time), 'k-')
        plt.xlabel('Time (s)')
        plt.ylabel('Counts')
        plt.title('Atik T=-1 Flat')
        plt.savefig('Atik_T=-1_Flat.pdf')

    else:    
        time = sorted(np.squeeze(np.array([time_table[k] for k in time_table.keys()])))

        fig1,ax1 = plt.subplots()
        counts_norm = counts_unique/max(counts_unique)
        ax1.errorbar(time, counts_norm,
                     yerr = np.std(counts_norm, dtype=np.float64),
                    fmt = ' ',
                    marker = 'o',
                    markersize = 5,
                    elinewidth=1)
                   
        ax1.set_xlabel('Time (s)')
        ax1.set_ylabel('Counts')
        ax1.legend(['Block1', 'Block2', 'Block3', 'Block4', 'Block5', 'Block6',
                    'Block7', 'Block8', 'Block9', 'Block10', 'Block11',
                    'Block12', 'Block13', 'Block14', 'Block14', 'Block16'])

        slope, intercept, r_value, p_value, std_err = linregress(time, counts_norm)

##        plt.title('Atik T=3 Dark - Normalized counts')
##        plt.savefig('Atik_T=3_Dark.pdf')
           
    return(intercept, plt.show())
Example #15
0
def G1(wave_range, flux_range, A0, eline0, sigma0, plot=0):
    def G_model(x, A0=1, eline0=1, sigma0=300):

        l_0 = eline0
        model0 = A0 * np.exp(-0.5 * (x - l_0)**2 / (sigma0**2))

        return model0

    def G_deriv(x, A0=1, eline0=1, sigma0=300):
        # Jacobian of G_model
        l_0 = eline0
        y0 = (x - l_0) / (sigma0)
        model0 = A0 * np.exp(-0.5 * y0**2)

        d_A0 = np.exp(-0.5 * y0**2)
        d_sigma0 = A0 * d_A0 * (x - l_0)**2 / sigma0**3
        d_l0 = A0 * d_A0 * (x - l_0) / sigma0**2

        return [d_A0, d_l0, d_sigma0]

    # initialize fitters
    from astropy.modeling import models, fitting
    fit = fitting.LevMarLSQFitter()
    or_fit = fitting.FittingWithOutlierRemoval(fit,
                                               sigma_clip,
                                               niter=1,
                                               sigma=3.0)
    GaussModel = custom_model(G_model, fit_deriv=G_deriv)
    model = GaussModel()
    or_fitted_model, mask = or_fit(model, wave_range, flux_range)
    #or_fitted_model = fit(model, wave_range,flux_range)

    A0_best, sigma_best, eline_best = mask.A0, mask.sigma0, mask.eline0

    if plot == 1:

        plt.plot(wave_range, flux_range, 'k+')
        plt.plot(wave_range,
                 G_model(wave_range, A0_best, eline_best, sigma_best),
                 "b-",
                 label='best_fit')
        plt.legend()

    return [A0_best, eline_best, sigma_best, or_fitted_model]  #best_vals
Example #16
0
def fitB4(coord_iso):
    u = coord_iso[0]
    v = coord_iso[1]

    r = np.sqrt(u**2 + v**2)
    
    E=np.zeros(len(u))
    
    for i in range(0,len(u)):
        if np.sign(u[i])>0 and np.sign(v[i])>0 : E[i]=np.arctan(v[i]/u[i])
        elif np.sign(u[i])>0 and np.sign(v[i])<0 : E[i]=2*np.pi+np.arctan(v[i]/u[i])
        else : E[i]=np.pi+np.arctan(v[i]/u[i])
        
    Es = np.linspace(0,2*np.pi,num=100)



    dic = {'frequency': True, 'phase': True}
    
    g_init = (models.Sine1D(amplitude=0.1, frequency=1.5/np.pi, fixed=dic)
                +models.Sine1D(amplitude=0.1, frequency=2/np.pi, fixed=dic)
                +models.Sine1D(amplitude=0.1, frequency=1.5/np.pi,
                               phase=0.25, fixed=dic)
                +models.Sine1D(amplitude=0.1, frequency=2/np.pi,
                               phase=0.25, fixed=dic)
                +models.Const1D(amplitude=1.0,fixed={'amplitude':True}))
            
    fit = fitting.LevMarLSQFitter()
    or_fit = fitting.FittingWithOutlierRemoval(fit, sigma_clip, niter=3, sigma=3.0)
            
    filtered_data, or_fitted_model = or_fit(g_init, E, r)
    fitted_model = fit(g_init, E, r)
    
    plt.figure(figsize=(8,5))
    plt.plot(E, r, 'gx', label="original data")
    plt.plot(E, filtered_data, 'r+', label="filtered data")
    plt.plot(Es, fitted_model(Es), 'g-',
             label="model fitted w/ original data")
    plt.plot(Es, or_fitted_model(Es), 'r--',
             label="model fitted w/ filtered data")
    plt.legend(loc=2, numpoints=1)
    
    return or_fitted_model[3].amplitude.value
Example #17
0
def estimate_peak_width(data, min=2, max=8):
    """
    Estimates the FWHM of the spectral features (arc lines) by fitting
    Gaussians to the brightest peaks.

    Parameters
    ----------
    data:  ndarray
        1D data array (will be modified)
    min: int
        minimum plausible peak width
    max: int
        maximum plausible peak width (not inclusive)

    Returns
    -------
    float: estimate of FWHM of features
    """
    all_widths = []
    for fwidth in range(min, max + 1):  # plausible range of widths
        data_copy = data.copy()  # We'll be editing the data
        widths = []
        for i in range(15):  # 15 brightest peaks, should ensure we get real ones
            index = 2 * fwidth + np.argmax(data_copy[2 * fwidth:-2 * fwidth - 1])
            data_to_fit = data_copy[index - 2 * fwidth:index + 2 * fwidth + 1]
            m_init = models.Gaussian1D(stddev=0.42466 * fwidth) + models.Const1D(np.min(data_to_fit))
            m_init.mean_0.bounds = [-1, 1]
            m_init.amplitude_1.fixed = True
            fit_it = fitting.FittingWithOutlierRemoval(fitting.LevMarLSQFitter(),
                                                       sigma_clip, sigma=3)
            with warnings.catch_warnings():
                # Ignore model linearity warning from the fitter
                warnings.simplefilter('ignore')
                m_final, _ = fit_it(m_init, np.arange(-2 * fwidth, 2 * fwidth + 1),
                                    data_to_fit)
            # Quick'n'dirty logic to remove "peaks" at edges of CCDs
            if m_final.amplitude_1 != 0 and m_final.stddev_0 < fwidth:
                widths.append(m_final.stddev_0 / 0.42466)

            # Set data to zero so no peak is found here
            data_copy[index - 2 * fwidth:index + 2 * fwidth + 1] = 0.
        all_widths.append(sigma_clip(widths).mean())
    return sigma_clip(all_widths).mean()
    def addIllumMaskToDQ(self, adinputs=None, suffix=None, illum_mask=None):
        """
        Adds an illumination mask to each AD object

        Parameters
        ----------
        suffix: str
            suffix to be added to output files
        illum_mask: str/None
            name of illumination mask mask (None -> use default)
        """
        log = self.log
        log.debug(gt.log_message("primitive", self.myself(), "starting"))
        timestamp_key = self.timestamp_keys[self.myself()]

        for ad, illum in zip(
                *gt.make_lists(adinputs, illum_mask, force_ad=True)):
            if ad.phu.get(timestamp_key):
                log.warning(
                    'No changes will be made to {}, since it has '
                    'already been processed by addIllumMaskToDQ'.format(
                        ad.filename))
                continue

            ad_detsec = ad.detector_section()
            no_bridges = all(detsec.y1 > 1600 and detsec.y2 < 2900
                             for detsec in ad_detsec)
            has_48rows = (all(detsec.y2 == 4224 for detsec in ad_detsec)
                          and 'Hamamatsu' in ad.detector_name(pretty=True))

            if illum:
                log.fullinfo("Using {} as illumination mask".format(
                    illum.filename))
                final_illum = gt.clip_auxiliary_data(ad,
                                                     aux=illum,
                                                     aux_type='bpm',
                                                     return_dtype=DQ.datatype)

                for ext, illum_ext in zip(ad, final_illum):
                    if illum_ext is not None:
                        # Ensure we're only adding the unilluminated bit
                        iext = np.where(illum_ext.data > 0, DQ.unilluminated,
                                        0).astype(DQ.datatype)
                        ext.mask = iext if ext.mask is None else ext.mask | iext
            elif not no_bridges:  # i.e. there are bridges.
                # Default operation for GMOS full-frame LS
                # The 95% cut should ensure that we're sampling something
                # bright (even for an arc)
                # The max is intended to handle R150 data, where many of
                # the extensions are unilluminated

                row_medians = np.max(np.array(
                    [np.percentile(ext.data, 95, axis=1) for ext in ad]),
                                     axis=0)
                rows = np.arange(len(row_medians))
                m_init = models.Polynomial1D(degree=3)
                fit_it = fitting.FittingWithOutlierRemoval(
                    fitting.LinearLSQFitter(),
                    outlier_func=sigma_clip,
                    sigma_upper=1,
                    sigma_lower=3)
                m_final, _ = fit_it(m_init, rows, row_medians)
                model_fit = m_final(rows)
                # Find points which are significantly below the smooth illumination fit
                # First ensure we don't worry about single rows
                row_mask = at.boxcar(model_fit - row_medians > 0.1 * model_fit,
                                     operation=np.logical_and,
                                     size=1)
                row_mask = at.boxcar(row_mask, operation=np.logical_or, size=3)
                for ext in ad:
                    ext.mask |= (row_mask * DQ.unilluminated).astype(
                        DQ.datatype)[:, np.newaxis]

                if has_48rows:
                    actual_rows = 48 // ad.detector_y_bin()
                    for ext in ad:
                        ext.mask[:actual_rows] |= DQ.unilluminated

            # Timestamp and update filename
            gt.mark_history(ad, primname=self.myself(), keyword=timestamp_key)
            ad.update_filename(suffix=suffix, strip=True)

        return adinputs
Example #19
0
def fit_mex_hat_1d(data, sigma_factor=0, center_at=None, weighted=False):
    """Fit a 1D Mexican Hat function to the data.

    Parameters
    ----------

    data: 2D float array
        should be a 2d array, the initial center is used to estimate
        the fit center
    sigma_factor: float (optional)
        If sigma_factor > 0 then clipping will be performed
        on the data during the model fit
    center_at: float or None
        None by default, set to value to use as center
    weighted: bool
        if weighted is True, then weight the values by basic
        uncertainty hueristic

    Returns
    -------
    The the fit model for mexican hat 1D function
    """
    ldata = len(data)
    if center_at:
        x0 = 0
    else:
        x0 = int(ldata / 2.)

    # assumes negligable background
    if weighted:
        z = np.nan_to_num(1. / np.sqrt(data))  # use as weight

    x = np.arange(ldata)
    fixed_pars = {"x_0": True}

    # Initialize the fitter
    fitter = fitting.LevMarLSQFitter()
    if sigma_factor > 0:
        fit = fitting.FittingWithOutlierRemoval(fitter,
                                                sigma_clip,
                                                niter=3,
                                                sigma=sigma_factor)
    else:
        fit = fitter

    # Mexican Hat 1D + constant
    model = (models.MexicanHat1D(
        amplitude=np.max(data), x_0=x0, sigma=2., fixed=fixed_pars) +
             models.Polynomial1D(c0=data.min(), degree=0))

    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        if weighted:
            results = fit(model, x, data, weights=z)
        else:
            results = fit(model, x, data)

    # previous yield amp, ycenter, xcenter, sigma, offset
    if sigma_factor > 0:
        return results[1]
    else:
        return results
Example #20
0
def fit_moffat_1d(data,
                  gamma=2.,
                  alpha=1.,
                  sigma_factor=0.,
                  center_at=None,
                  weighted=False):
    """Fit a 1D moffat profile to the data and return the fit.

    Parameters
    ----------
    data: 2D data array
        The input sigma to use
    gamma: float (optional)
        The input gamma to use
    alpha: float (optional)
        The input alpha to use
    sigma_factor: float (optional)
        If sigma>0 then sigma clipping of the data is performed
        at that level
    center_at: float or None
        None by default, set to value to use as center
    weighted: bool
        if weighted is True, then weight the values by basic
        uncertainty hueristic

    Returns
    -------
    The fitted 1D moffat model for the data

    """
    # data is assumed to already be chunked to a reasonable size
    ldata = len(data)

    # guesstimate mean
    if center_at:
        x0 = 0
    else:
        x0 = int(ldata / 2.)

    # assumes negligable background
    if weighted:
        z = np.nan_to_num(1. / np.sqrt(data))  # use as weight

    x = np.arange(ldata)

    # Initialize the fitter
    fitter = fitting.LevMarLSQFitter()
    if sigma_factor > 0:
        fit = fitting.FittingWithOutlierRemoval(fitter,
                                                sigma_clip,
                                                niter=3,
                                                sigma=sigma_factor)
    else:
        fit = fitter

    # Moffat1D + constant
    model = (models.Moffat1D(
        amplitude=max(data), x_0=x0, gamma=gamma, alpha=alpha) +
             models.Polynomial1D(c0=data.min(), degree=0))

    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        if weighted:
            results = fit(model, x, data, weights=z)
        else:
            results = fit(model, x, data)

    # previous yield amp, ycenter, xcenter, sigma, offset
    # if sigma clipping is used, results is a tuple of data, model
    if sigma_factor > 0:
        return results[1]
    else:
        return results
Example #21
0
def rb_iter_contfit(wave, flux, error, **kwargs):
    '''
    Iterative continuum fitter using Legendre polynomials
    Input:  -
                wavelength array
                flux array 
                error array
        optional input:
                maxiter :-  maximum iteration [25 default]
                order   :-  polynomial order of fit [4 default]

    output: -
               fit_final : Final fitted continuum array
               resid_final : residual error array
               fit_error  : error on the fit [standard deviation of the residual]

    Written by:  Rongmon Bordoloi
    Tested on Python 3.7  Sep 4 2019
    --------------------------

    example :
        from IGM import rb_iter_contfit as r
        out= r.rb_iter_contfit(wave,flux,error,order=5)

        out[0] = fitted continuum
    '''

    if 'maxiter' in kwargs:
        maxiter = kwargs['maxiter']
    else:
        maxiter = 25
    if 'order' in kwargs:
        order = kwargs['order']
    else:
        order = 4

    #Initialize a mask
    mask = np.ones((np.size(wave), ))

    # Looking for chip gaps
    chip_gap = np.where(((error == 0) & (flux == 0)) | (error - flux == 0))
    if (np.size(chip_gap) > 0):
        #error[chip_gap]=1;
        #flux[chip_gap]=1;
        mask[chip_gap] = 0

    # Now get rid of negative error values
    qq = np.where(error <= 0)
    if (np.size(qq) > 0):
        error[qq] = np.median(error)

    #Do a sanity check to avoid bad flux values
    q = np.where(flux <= 0)
    if (np.size(q) > 0):
        flux[q] = error[q]

    w = 1 / error**2.  # Weight

    index = 0  #Initialize the counter
    outside_chip_gap = np.where(((error != 0) & (flux != 0))
                                | (error - flux != 0))
    med_err = np.median(error[outside_chip_gap])
    med_flux = np.median(flux[outside_chip_gap])

    # Now take out any possible emission or absorption features
    #%Flux values less than the median error are 1sigma within zero, so should be masked
    #%Try to exclude emission. anything above 2sigma over the median flux should be masked
    bd = np.where((flux < med_err))  #| (flux > (med_flux+3*med_err)))
    nbd = len(bd[0])
    if (nbd > 0):
        mask[bd] = 0
    mask = np.array(mask)
    qq = np.where(mask == 1)
    #Here I'm cutting out any chip gap or any other absorption feature. These are permanently excluded from the fit
    flux_new = flux[qq]
    wave_new = wave[qq]
    weights = np.array(w[qq])
    # Fit the data using Legedre Polynomials
    g_init = models.Legendre1D(order)
    # initialize fitters
    fit = fitting.LevMarLSQFitter()
    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        new_fit = fitting.FittingWithOutlierRemoval(fit,
                                                    sigma_clip,
                                                    niter=maxiter,
                                                    sigma=3.0)
        filtered_fit, filtered_data = new_fit(g_init, wave_new,
                                              flux_new)  #,weights=weights)
    ''''
    while (index < maxiter):
        print("Index="+np.str(index))
        index=index+1
        oldmask=mask
        # Fit the data using Legedre Polynomials
        g_init = models.Legendre1D(order)
        # initialize fitters
        fit = fitting.LevMarLSQFitter()
        new_fit = fitting.FittingWithOutlierRemoval(fit, sigma_clip,niter=maxiter, sigma=3.0)
        filtered_data, new_fit = new_fit(g_init, wave_new,flux_new,weights=weights)


        #fit_g = fitting.LevMarLSQFitter()
        #new_fit = fit_g(g_init, wave_new,flux_new) # Learn how to use the weights....
        cont=new_fit(wave_new)
        resid=flux_new/np.double(cont)
        #mederr=np.sqrt(scipy.stats.moment(resid,2)) #;;Use the median error to set "sigma" for the clipping. If you median is skewed, i think you're pretty much hosed
        mederr=np.std(resid)
        # Do some sigma clipping here
        median_val=np.median(resid)
        kappa=3.;  # 3 sigma clipping
        bd = np.where( (resid > (median_val+kappa*mederr)) | (resid < (median_val - mederr*kappa))) 
        gd= np.where( (resid <= (median_val+kappa*mederr)) & (resid >= (median_val - mederr*kappa))) 
        print np.size(gd)
        print np.size(bd)
        if (np.size(gd) > 0):
            mask[gd] = 1  # Allowing previously rejected points to reenter
        if (np.size(bd) > 0):
            mask[bd] = 0
 
        
        if (index >0):
            diff=oldmask-mask
            qq = np.where(diff != 0.)
            if (np.size(qq)==0):
                print index
                print "No more Clipping"
                index=maxiter # ;;mask and oldmask are identical if all elements match
        
        # Updating everything
        qq=np.where(mask==1)
        flux_new=flux[qq]
        wave_new=wave[qq]
        weights=w[qq]

    '''
    #pdb.set_trace()
    fit_final = filtered_fit(wave)
    resid_final = flux / fit_final
    fit_error = np.std(
        resid_final)  #np.sqrt(scipy.stats.moment(resid_final,2))

    return fit_final, resid_final, fit_error
Example #22
0
# y_initvalues  = np.ones_like(binsX_TRGB) * 1.0
# y_upperBounds = np.ones_like(binsX_TRGB) * 1.1
# y_lowerBounds = np.ones_like(binsX_TRGB) * 0.9

y_initvalues = 0.31 * (binsX_TRGB - 2.1)**2 - 3.9
y_upperBounds = 0.25 * (binsX_TRGB - 2)**2 - 3.0
y_lowerBounds = 0.25 * (binsX_TRGB - 2)**2 - 5.0

gauss_mean = np.zeros((numX_TRGB))
gauss_amplitude = np.zeros((numX_TRGB))
gauss_stddev = np.zeros((numX_TRGB))

p_degree = 1  # max polynom degree in the approximating function
fit = fitting.LevMarLSQFitter()
or_fit = fitting.FittingWithOutlierRemoval(fit,
                                           sigma_clip,
                                           niter=10,
                                           sigma=3.0)


def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return array[idx]


for i in range(numX_TRGB):
    # print(i,'of',numX_TRGB)
    # g_init -- Gauss model with initial values
    sliceTRGB = regionTRGB[:, i] / np.max(regionTRGB[:, i])
    y_bounds = (y_lowerBounds[i], y_upperBounds[i])
    mapPeak = np.max(sliceTRGB)
Example #23
0
def plot_stars_fit_plane(img_file, vmin=None, vmax=None, fignum=None):
    img, hdr = fits.getdata(img_file, header=True)
    if 'BINFAC' in hdr:
        # FLI CAMERA
        ps = 0.04  # arcsecs / pix
        binfac = hdr['BINFAC']
        ps = ps * binfac
    else:
        ps = 0.12

    _in = open(img_file.replace('.fits', '_fwhm.pickle'), 'rb')

    sources = pickle.load(_in)
    min_fwhm = pickle.load(_in)
    maj_fwhm = pickle.load(_in)
    elon = pickle.load(_in)
    phi = pickle.load(_in)
    _in.close()

    # Only use the brightest sources for calculating the mean. This is just for printing.
    min_fwhm_mean, min_fwhm_med, min_fwhm_std = sigma_clipped_stats(min_fwhm)
    maj_fwhm_mean, maj_fwhm_med, maj_fwhm_std = sigma_clipped_stats(maj_fwhm)
    elon_mean, elon_med, elon_std = sigma_clipped_stats(elon)
    phi_mean, phi_med, phi_std = sigma_clipped_stats(phi)

    print('        Number of sources = ', len(sources))
    print('        Minor fwhm = {0:.2f} +/- {1:.2f} arcsec'.format(
        min_fwhm_med * ps, min_fwhm_std * ps))
    print('        Major fwhm = {0:.2f} +/- {1:.2f} arcsec'.format(
        maj_fwhm_med * ps, maj_fwhm_std * ps))
    print('        Elongation = {0:.2f} +/- {1:.2f}'.format(
        elon_med, elon_std))
    print('        Pos. Angle = {0:.2f} +/- {1:.2f} rad'.format(
        phi_med, phi_std))

    x = sources['xcentroid']
    y = sources['ycentroid']
    z = min_fwhm * ps

    def plot_plane(xdat, ydat, zdat, title, vmin, vmax, image=False):
        plt.clf()
        plt.subplots_adjust(left=0.13)
        if image == False:
            plt.scatter(xdat,
                        ydat,
                        c=zdat,
                        s=50,
                        edgecolor='none',
                        vmin=vmin,
                        vmax=vmax,
                        cmap='plasma')
        else:
            plt.imshow(zdat,
                       vmin=vmin,
                       vmax=vmax,
                       origin='lower',
                       cmap='plasma')

        plt.xlabel('X (pixels)')
        plt.ylabel('Y (pixels)')
        plt.title(title)
        plt.colorbar(label='FWHM (")')
        plt.axis('equal')

    ##########
    # Fit the data to a plane.
    ##########
    if (len(sources) > 10):
        p_init = models.Polynomial2D(degree=1)
        fitter1 = fitting.LevMarLSQFitter()
        fitter2 = fitting.FittingWithOutlierRemoval(fitter1,
                                                    sigma_clip,
                                                    niter=3,
                                                    sigma=3)

        z_good, fit2_model = fitter2(p_init, x, y, z)

        n_tot = len(z_good)
        n_good = z_good.count()
        n_bad = n_tot - n_good
        print('Keeping {0:d} of {1:d}, {2:d} outliers'.format(
            n_good, n_tot, n_bad))

        y_grid, x_grid = np.mgrid[:int(y.max()), :int(x.max())]
        plane2 = fit2_model(x_grid, y_grid)

    else:
        z_good = z
        plane2 = None

    ##########
    # Plotting
    ##########
    if vmin is None:
        vmin = z_good.min()
    if vmax is None:
        vmax = z_good.max()

    if plane2 is not None:
        plt.figure(1, figsize=(8, 6))
        plt.clf()
        plot_plane(x_grid, y_grid, plane2, 'Plane 2', vmin, vmax, image=True)

    if fignum is None:
        plt.figure(figsize=(8, 6))
    else:
        plt.figure(fignum, figsize=(8, 6))
        plt.clf()

    plot_plane(x, y, z, img_file, vmin, vmax, image=False)
    plt.plot(x[z_good.mask == True],
             y[z_good.mask == True],
             'kx',
             ms=10,
             linestyle='none')

    print('Maximum Tilt Range in Model Plane is: {0:.2f}" - {1:.2f}"'.format(
        plane2.min(), plane2.max()))
    print(
        'Maximum Tilt Delta in Model Plane is: {0:.2f}"'.format(plane2.max() -
                                                                plane2.min()))
    return
Example #24
0
    def fit_profile(self, bgdist = None, fitdist = None, fitfunc=None, verbose=False, beamwidth=None, bgdegree = 1):

        """
        Fit a model to the filament's master profile

        Parameters
        ------
        self: An instance of the radfil_class

        fitdist: number-like or tuple-like with a length of 2
            The radial distance (in units of pc) out to which you'd like to fit your profile.

            When the input has a length of 2, data points with distances between the two values will be
            used in the fitting.  The negative direction is always to the left of the spline direction,
            which always runs from smaller axis-0 indices to larger axis-0 indices.

        bgdist: tuple-like, with a shape (2,)
            The radial distance range that defines the data points to be used in background subtraction; if None no background is fit

        fitfunc: string
            Options include "Gaussian" or "Plummer"

        bgdegree: integer (default = 1)
            The order of the polynomial used in background subtraction (options are 1 or 0).  Active only when wrap = False.

        beamwidth: float or int
            If not inputed into the make_fil_spine method, beamwidth needs to be provided to calculate deconvolved FWHM of Gaussian/Plummer Fits
            If not provided, deconvolved FWHM values will be set to nan

        Attributes
        ------

        xbg, ybg: 1D numpy.ndarray (list-like)
            Data used for background subtraction.

        xfit, yfit: 1D numpy.ndarray (list-like)
            Data used in fitting.

        bgfit: astropy.modeling.functional_models (1st-order) or float (0th-order)
            The background removal information.

        profilefit: astropy.modeling.functional_models
            The fitting results.
            
        param_cov: the covariance matrix of the parameters

        """

        #Check to make sure user entered valid function
        if isinstance(fitfunc, str):
            if (fitfunc.lower() == 'plummer') or (fitfunc.lower() == 'gaussian'):
                self.fitfunc = fitfunc.lower()
                fitfunc_style = self.fitfunc.capitalize()
            else:
                raise ValueError("Reset fitfunc; You have not entered a valid function. Input 'Gaussian' or 'Plummer'")
        else:
            raise ValueError("Set a fitfunc; You have not entered a valid function. Input 'Gaussian' or 'Plummer'")

        #Check whether beamwidth already exists, or whether they have inputed one here to compute deconvolved FWHM
        if (hasattr(self,'beamwith')==False) & (type(beamwidth)!=None):
            if isinstance(beamwidth, numbers.Number):
                if (self.header is not None):
                    self.beamwidth = beamwidth * u.arcsec
                else:
                    self.beamwidth = beamwidth * u.pix
            else:
                self.beamwidth = None

        # Mask for bg removal
        ## take only bgdist, which should be a 2-tuple or 2-list
        if np.asarray(bgdist).shape == (2,):
            self.bgdist = np.sort(bgdist)
            ## below can be merged... ##########
            if self.wrap:
                maskbg = ((self.masterx >= self.bgdist[0])&\
                          (self.masterx < self.bgdist[1])&\
                          np.isfinite(self.mastery))
            else:
                maskbg = ((abs(self.masterx) >= self.bgdist[0])&\
                          (abs(self.masterx) < self.bgdist[1])&\
                          np.isfinite(self.mastery))

            if sum(maskbg) == 0.:
                raise ValueError("Reset bgdist; there is no data to fit for the background.")
        else:
            self.bgdist = None
            warnings.warn("No background removal will be performed.")

        # Mask for fitting
        ## Anything inside `fitdist` pc is used in fitting.
        if isinstance(fitdist, numbers.Number):
            self.fitdist = fitdist
            mask = ((self.masterx >= (-self.fitdist))&\
                    (self.masterx < self.fitdist)&\
                    np.isfinite(self.mastery))
            if sum(mask) == 0.:
                raise ValueError("Reset fitdist; there is no data inside fitdist.")
        elif np.asarray(fitdist).shape == (2,):
            self.fitdist = np.sort(fitdist)
            mask = ((self.masterx >= self.fitdist[0])&\
                    (self.masterx < self.fitdist[1])&\
                    np.isfinite(self.mastery))
            if sum(mask) == 0.:
                raise ValueError("Reset fitdist; there is no data inside fitdist.")
        ## Fit all data if no fitdist
        else:
            self.fitdist = None
            ## Just fool-proof
            mask = (np.isfinite(self.masterx)&\
                    np.isfinite(self.mastery))
            if sum(mask) == 0.:
                raise ValueError("Reset fitdist; there is no data inside fitdist.")

        # Fit for the background, and remove
        ## If bgdist (yes, background removal.)
        if np.asarray(self.bgdist).shape == (2,):
            ## In the case where the profile is wrapped, simply take the mean in the background.
            ## This is because that a linear fit (with a slope) with only one side is not definite.
            if self.wrap:
                xbg, ybg = self.masterx, self.mastery
                xbg, ybg = xbg[maskbg], ybg[maskbg]
                self.xbg, self.ybg = xbg, ybg
                self.bgfit = models.Polynomial1D(degree = 0,
                                                 c0 = np.median(self.ybg)) ### No fitting!
                self.ybg_filtered = None ## no filtering during background removal
                ## Remove bg without fitting (or essentially a constant fit).
                xfit, yfit = self.masterx[mask], self.mastery[mask]
                yfit = yfit - self.bgfit(xfit) ##########
                ## pass nobs to fitter; masked
                if self.binning:
                    self.nobsfit = self.masternobs[mask]
                else:
                    self.nobsfit = None
                print "The profile is wrapped. Use the 0th order polynomial in BG subtraction."
            ## A first-order bg removal is carried out only when the profile is not wrapped.
            else:
                ## Fit bg
                xbg, ybg = self.masterx, self.mastery
                xbg, ybg = xbg[maskbg], ybg[maskbg]
                self.xbg, self.ybg = xbg, ybg
                bg_init = models.Polynomial1D(degree = bgdegree) ##########
                fit_bg = fitting.LinearLSQFitter()

                ## outlier removal; use sigma clipping, set to 3 sigmas
                fit_bg_or = fitting.FittingWithOutlierRemoval(fit_bg, sigma_clip,
                                                              niter=10, sigma=3.)
                bg = fit_bg(bg_init, self.xbg, self.ybg)
                data_or, bg_or = fit_bg_or(bg_init, self.xbg, self.ybg)
                self.bgfit = bg_or.copy()
                self.ybg_filtered = data_or ## a masked array returned by the outlier removal

                ## Remove bg and prepare for fitting
                xfit, yfit = self.masterx[mask], self.mastery[mask]
                yfit = yfit - self.bgfit(xfit)
                ## pass nobs to fitter; masked
                if self.binning:
                    self.nobsfit = self.masternobs[mask]
                else:
                    self.nobsfit = None

        ## If no bgdist
        else:
            self.bgfit = None
            self.xbg, self.ybg = None, None
            self.ybg_filtered = None
            ## Set up fitting without bg removal.
            xfit, yfit = self.masterx[mask], self.mastery[mask]
            ## pass nobs to fitter; masked
            if self.binning:
                self.nobsfit = self.masternobs[mask]
            else:
                self.nobsfit = None
        self.xfit, self.yfit = xfit, yfit

        # Fit Model
        ## Gaussian model
        if self.fitfunc == "gaussian":
            g_init = models.Gaussian1D(amplitude = .8*np.max(self.yfit),
                                    mean = 0.,
                                    stddev=np.std(self.xfit),
                                    fixed = {'mean': True},
                                    bounds = {'amplitude': (0., np.inf),
                                             'stddev': (0., np.inf)})
            fit_g = fitting.LevMarLSQFitter()
            
            if self.binning:
                g = fit_g(g_init, self.xfit, self.yfit, weights = self.nobsfit)
            else:
                g = fit_g(g_init, self.xfit, self.yfit)
                
            self.profilefit = g.copy()
            self.param_cov=fit_g.fit_info['param_cov'] #store covariance matrix of the parameters
            print '==== Gaussian ===='
            print 'amplitude: %.3E'%self.profilefit.parameters[0]
            print 'width: %.3f'%self.profilefit.parameters[2]
        ## Plummer-like model
        elif self.fitfunc == "plummer":
            g_init = Plummer1D(amplitude = .8*np.max(self.yfit),
                            powerIndex=2.,
                            flatteningRadius = np.std(self.xfit))

            fit_g = fitting.LevMarLSQFitter()
            if self.binning:
                g = fit_g(g_init, self.xfit, self.yfit, weights = self.nobsfit)
            else:
                g = fit_g(g_init, self.xfit, self.yfit)
            self.profilefit = g.copy()
            self.param_cov=fit_g.fit_info['param_cov'] #store covariance matrix of the parameters
            self.profilefit.parameters[2] = abs(self.profilefit.parameters[2]) #Make sure R_flat always positive
            print '==== Plummer-like ===='
            print 'amplitude: %.3E'%self.profilefit.parameters[0]
            print 'p: %.3f'%self.profilefit.parameters[1]
            print 'R_flat: %.3f'%self.profilefit.parameters[2]

        else:
            raise ValueError("Reset fitfunc; no valid function entered. Options include 'Gaussian' or 'Plummer'")

        ### Plot background fit if bgdist is not none ###
        if self.bgdist is not None:
            fig, ax = plt.subplots(figsize = (8, 8.), ncols = 1, nrows = 2)
            axis = ax[0]

            #Adjust axes limits
            xlim=np.max(np.absolute([np.nanpercentile(self.xall[np.isfinite(self.yall)],1),np.nanpercentile(self.xall[np.isfinite(self.yall)],99)]))
            if not self.wrap:
                axis.set_xlim(-xlim,+xlim)
            else:
                axis.set_xlim(0., +xlim)
            axis.set_ylim(np.nanpercentile(self.yall,0)-np.abs(0.5*np.nanpercentile(self.yall,0)),np.nanpercentile(self.yall,99.9)+np.abs(0.25*np.nanpercentile(self.yall,99.9)))

            axis.plot(self.xall, self.yall, 'k.', markersize = 1., alpha = .1)

            ##########
            if self.binning:
                plotbinx, plotbiny = np.ravel(zip(self.bins[:-1], self.bins[1:])), np.ravel(zip(self.mastery, self.mastery))
                axis.plot(plotbinx, plotbiny,
                          'r-')

            # Plot the range
            plot_bgdist = self.bgdist.copy()
            plot_bgdist[~np.isfinite(plot_bgdist)] = np.asarray(axis.get_xlim())[~np.isfinite(plot_bgdist)]
            axis.fill_between(plot_bgdist, *axis.get_ylim(),
                              facecolor = (0., 1., 0., .05),
                              edgecolor = 'g',
                              linestyle = '--',
                              linewidth = 1.)
            axis.fill_between(-plot_bgdist, *axis.get_ylim(),
                              facecolor = (0., 1., 0., .05),
                              edgecolor = 'g',
                              linestyle = '--',
                              linewidth = 1.)
            axis.plot(np.linspace(axis.get_xlim()[0],axis.get_xlim()[1],200), self.bgfit(np.linspace(axis.get_xlim()[0],axis.get_xlim()[1],200)),'g-', lw=3)
            axis.set_xticklabels([])
            axis.tick_params(labelsize=14)

            xplot = self.xall
            yplot = self.yall - self.bgfit(xplot)


            #Add labels#
            if self.bgfit.degree == 1:
                axis.text(0.03, 0.95,"y=({:.2E})x+({:.2E})".format(self.bgfit.parameters[1],self.bgfit.parameters[0]),ha='left',va='top', fontsize=14, fontweight='bold',transform=axis.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1})
            elif self.bgfit.degree == 0:
                axis.text(0.03, 0.95,"y=({:.2E})".format(self.bgfit.c0.value),ha='left',va='top', fontsize=14, fontweight='bold',transform=axis.transAxes)
            else:
                warnings.warn("Labeling BG functions of higher degrees during plotting are not supported yet.")
            axis.text(0.97, 0.95,"Background\nFit", ha='right',va='top', fontsize=20, fontweight='bold',color='green',transform=axis.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1})

            axis=ax[1]

        else:
            fig, ax = plt.subplots(figsize = (8, 4.), ncols = 1, nrows = 1)
            axis = ax

            xplot=self.xall
            yplot=self.yall


        ## Plot model
        #Adjust axis limit based on percentiles of data
        xlim=np.max(np.absolute([np.nanpercentile(self.xall[np.isfinite(self.yall)],1),np.nanpercentile(self.xall[np.isfinite(self.yall)],99)]))
        if not self.wrap:
            axis.set_xlim(-xlim,+xlim)
        else:
            axis.set_xlim(0., +xlim)
        axis.set_ylim(np.nanpercentile(yplot,0)-np.abs(0.5*np.nanpercentile(yplot,0)),np.nanpercentile(yplot,99.9)+np.abs(0.25*np.nanpercentile(yplot,99.9)))


        axis.plot(xplot, yplot, 'k.', markersize = 1., alpha = .1)
        if self.binning:
            if self.bgdist is not None:
                plotbinx, plotbiny = np.ravel(zip(self.bins[:-1], self.bins[1:])), np.ravel(zip(self.mastery-self.bgfit(self.masterx), self.mastery-self.bgfit(self.masterx)))
            else:
                plotbinx, plotbiny = np.ravel(zip(self.bins[:-1], self.bins[1:])), np.ravel(zip(self.mastery, self.mastery))
            axis.plot(plotbinx, plotbiny,
                      'r-')

        # Plot the range
        if self.fitdist is not None:
            ## symmetric fitting range
            if isinstance(self.fitdist, numbers.Number):
                axis.fill_between([-self.fitdist, self.fitdist], *axis.get_ylim(),
                                  facecolor = (0., 0., 1., .05),
                                  edgecolor = 'b',
                                  linestyle = '--',
                                  linewidth = 1.)
            ## asymmetric fitting range
            elif np.asarray(self.fitdist).shape == (2,):
                plot_fitdist = self.fitdist.copy()
                plot_fitdist[~np.isfinite(plot_fitdist)] = np.asarray(axis.get_xlim())[~np.isfinite(plot_fitdist)]
                axis.fill_between(plot_fitdist, *axis.get_ylim(),
                                  facecolor = (0., 0., 1., .05),
                                  edgecolor = 'b',
                                  linestyle = '--',
                                  linewidth = 1.)
        ## no fitting range; all data are used
        else:
            axis.fill_between(axis.get_xlim(), *axis.get_ylim(),
                              facecolor = (0., 0., 1., .05),
                              edgecolor = 'b',
                              linestyle = '--',
                              linewidth = 1.)

        # Plot the predicted curve
        axis.plot(np.linspace(axis.get_xlim()[0],axis.get_xlim()[1],200), self.profilefit(np.linspace(axis.get_xlim()[0],axis.get_xlim()[1],200)), 'b-', lw = 3., alpha = .6)


        axis.text(0.03, 0.95,"{}={:.2E}\n{}={:.2f}\n{}={:.2f}".format(self.profilefit.param_names[0],self.profilefit.parameters[0],self.profilefit.param_names[1],self.profilefit.parameters[1],self.profilefit.param_names[2],self.profilefit.parameters[2]),ha='left',va='top', fontsize=14, fontweight='bold',transform=axis.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1})
        axis.text(0.97, 0.95,"{}\nFit".format(fitfunc_style), ha='right',va='top', fontsize=20, color='blue',fontweight='bold',transform=axis.transAxes)#,bbox={'facecolor':'white', 'edgecolor':'none', 'alpha':1.0, 'pad':1})
        axis.tick_params(labelsize=14)

        #add axis info
        fig.tight_layout()
        fig.subplots_adjust(hspace=0)
        fig.text(0.5, -0.05, "Radial Distance ({})".format(str(self.imgscale.unit)),fontsize=25,ha='center')
        fig.text(-0.05, 0.5, "Profile Height",fontsize=25,va='center',rotation=90)

        # Return a dictionary to store the key setup Parameters
        params = {'bgdist': self.bgdist,
                  'fitdist': self.fitdist,
                  'fitfunc': self.fitfunc}
        self._params['fit_profile'] = params

        # Return a dictionary to store the results
        ## All the fits are `astropy.model` objects.
        results = {'bgfit': self.bgfit,
                   'profilefit': self.profilefit,
                   'xbg': self.xbg,
                   'ybg': self.ybg,
                   'xfit': self.xfit,
                   'yfit': self.yfit}
        self._results['fit_profile'] = results

        if self.fitfunc == "gaussian":
            FWHM = 2.*np.sqrt(2.*np.log(2.))*self.profilefit.parameters[2]

            if self.beamwidth is not None:

                if (self.beamwidth.unit == u.arcsec) and (self.imgscale_ang is not None):
                    beamwidth_phys = (self.beamwidth/self.imgscale_ang).decompose()*self.imgscale.value
                    print 'Physical Size of the Beam:', beamwidth_phys*self.imgscale.unit

                    if np.isfinite(np.sqrt(FWHM**2.-beamwidth_phys**2.)):
                        FWHM_deconv = np.sqrt(FWHM**2.-beamwidth_phys**2.).value
                    else:
                        FWHM_deconv = np.nan
                        warnings.warn("The Gaussian width is not resolved.")

                elif (self.beamwidth.unit == u.pix):
                    beamwidth_phys = self.beamwidth.value
                    print 'Beamwidth in the Pixel Unit:', self.beamwidth

                    if np.isfinite(np.sqrt(FWHM**2.-beamwidth_phys**2.)):
                        FWHM_deconv = np.sqrt(FWHM**2.-beamwidth_phys**2.).value
                    else:
                        FWHM_deconv = np.nan
                        warnings.warn("The width is not resolved.")
                else:
                    FWHM_deconv = np.nan
                    warnings.warn("A beamwidth is not found. Deconvolved FWHMs cannot be derived.")

            else:
                    FWHM_deconv = np.nan
                    warnings.warn("A beamwidth is not found. Deconvolved FWHMs cannot be derived.")


        if self.fitfunc == "plummer":

            FWHM = 2.*self.profilefit.parameters[2]*np.sqrt(2.**(2./(self.profilefit.parameters[1]-1.)) - 1.)

            if self.beamwidth is not None:
                if (self.beamwidth.unit == u.arcsec) and (self.imgscale_ang is not None):
                    beamwidth_phys = (self.beamwidth/self.imgscale_ang).decompose()*self.imgscale.value
                    print 'Physical Size of the Beam:', beamwidth_phys*self.imgscale.unit

                    if np.isfinite(np.sqrt(FWHM**2.-beamwidth_phys**2.)):
                        FWHM_deconv = np.sqrt(FWHM**2.-beamwidth_phys**2.).value
                    else:
                        FWHM_deconv = np.nan
                        warnings.warn("The width is not resolved.")

                elif (self.beamwidth.unit == u.pix):
                    beamwidth_phys = self.beamwidth.value
                    print 'Beamwidth in the Pixel Unit:', self.beamwidth

                    if np.isfinite(np.sqrt(FWHM**2.-beamwidth_phys**2.)):
                        FWHM_deconv = np.sqrt(FWHM**2.-beamwidth_phys**2.).value
                    else:
                        FWHM_deconv = np.nan
                        warnings.warn("The width is not resolved.")
                else:
                    FWHM_deconv = np.nan
                    warnings.warn("A beamwidth is not found. Deconvolved FWHMs cannot be derived.")
            else:
                FWHM_deconv = np.nan
                warnings.warn("A beamwidth is not found. Deconvolved FWHMs cannot be derived.")

        self.FWHM, self.FWHM_deconv = FWHM, FWHM_deconv
        self._results['FWHM'] = FWHM
        self._results['FWHM_deconv'] = FWHM_deconv

        return self
def calculate_transform_coefficients(input_mag,
                                     catalog_mag,
                                     color,
                                     input_mag_error=None,
                                     catalog_mag_error=None,
                                     faintest_mag=None,
                                     order=1,
                                     sigma=2.0,
                                     gain=None,
                                     verbose=False,
                                     extended_output=False):
    """
    Calculate linear transform coefficients from input magnitudes to catalog
    magnitudes.

    Parameters
    ----------

    input_mag : numpy array or astropy Table column
        Input magnitudes; for example, instrumental magnitudes.
    catalog_mag : numpy array or astropy Table column
        Catalog (or reference) magnitudes; the magnitudes to which the
        input_mag will eventually be transformed.
    color : numpy array or astropy Table column
        Colors to use in determining transform coefficients.
    input_mag_error : numpy array or astropy Table column, optional
        Error in input magnitudes. Default is zero.
    catalog_mag_error : numpy array or astropy Table column, optional
        Error in catalog magnitudes. Default is zero.
    faintest_mag_for_transform : float, optional
        If this is not ``None``, the magnitude of the faintest catalog stars
        to use in computing transform coefficients.
    order : int, optional
        Order of the polynomial fit to use in correcting for color.
    sigma : float, optional
        Value of sigma to use to reject outliers while fitting using
        sigma clipping.
    gain : float, optional
        If not ``None``, adjust the instrumental magnitude by
        -2.5 * log10(gain), i.e. gain correct the magnitude.
    verbose : bool, optional
        If ``True``, print some diagnostic information.
    extended_output : bool, optional
        If ``True``, return additional information.

    Returns
    -------

    filtered_data : `~numpy.ma.core.MaskedArray`
        The data, with the mask set ``True`` for the data that was *omitted*
        from the fit.

    model : `astropy.modeling.FittableModel`
        Entries in the model are the coefficients in the fit made to the
        data. Since the model is always a polynomial, these are terms in
        a polynomial in the order of ascending power. In other words, the
        coefficient ``ci`` is the coefficient of the term ``x**i``.

    If ``extended_output=True``, then also return:

    fit_input : tuple
        A tuple of color, magnitude for only the stars brighter than
        ``faintest_mag_for_transform``. These are input to the sigma-clipping
        fitter.

    used_in_fit : tuple
        A tuple of color, magnitude for only the stars brighter than
        ``faintest_mag_for_transform`` that were not sigma-cliped out.

    Notes
    -----

    This function has some pretty serious limitations right now:

    + Errors in the independent variable are ignored.
    + Outliers are rejected using a modified loss function (Huber loss) that
      cannot be modified.
    + No errors are estimated in the calculated transformation coefficients.

    And there is all the stuff that is not listed here...
    """

    if input_mag_error is None:
        input_mag_error = np.zeros_like(input_mag)
    if catalog_mag_error is None:
        catalog_mag_error = np.zeros_like(catalog_mag)

    if gain is None:
        gain = 1.0

    # Independent variable is the color, dependent variable is the
    # difference between the measured (input) magnitude and the catalog
    # magnitude.

    mag_diff = catalog_mag - (input_mag - 2.5 * np.log10(gain))

    # The error is the errors of those combined in quadrature.
    combined_error = np.sqrt(input_mag_error**2 + catalog_mag_error**2)

    # If both errors are zero then the error is omitted.
    if (combined_error == 0).all():
        dy = None
    else:
        dy = combined_error

    g_init = models.Polynomial1D(order)
    fit = fitting.LinearLSQFitter()
    or_fit = fitting.FittingWithOutlierRemoval(fit,
                                               sigma_clip,
                                               niter=2,
                                               sigma=sigma)

    if faintest_mag is not None:
        bright = (catalog_mag < faintest_mag).filled(False)
    else:
        bright = np.ones_like(mag_diff, dtype='bool')

    bright_index = np.nonzero(bright)

    if verbose:
        print(color[bright].max())
    # get fitted model and filtered data
    or_fitted_model, filtered_data_mask = or_fit(g_init, color[bright],
                                                 mag_diff[bright])

    # Restore the filtered_data to the same size as the input
    # magnitudes. Unmasked values were included in the fit,
    # masked were not, either because they were too faint
    # or because they were sigma clipped out.
    restored_mask = np.zeros_like(mag_diff, dtype='bool')
    restored_mask[bright_index] = filtered_data_mask
    restored_mask[~bright] = True

    restored_filtered = mag_diff.copy()
    restored_filtered.mask = restored_mask

    if extended_output:
        return (restored_filtered, or_fitted_model, (color[bright],
                                                     mag_diff[bright]),
                (color[bright][~filtered_data_mask],
                 mag_diff[bright][~filtered_data_mask]))
    else:
        return (restored_filtered, or_fitted_model)
Example #26
0
    def optimal_extraction(self,
                           data,
                           mask,
                           var,
                           aper_lower,
                           aper_upper,
                           cr_rej=5,
                           max_iters=None):
        """Optimal extraction following Horne (1986, PASP 98, 609)"""
        BAD_BITS = DQ.bad_pixel | DQ.cosmic_ray | DQ.no_data | DQ.unilluminated

        slitlength, npix = data.shape
        pixels = np.arange(npix)

        all_x1 = self._center_pixels + aper_lower
        all_x2 = self._center_pixels + aper_upper
        ix1 = max(int(min(all_x1) + 0.5), 0)
        ix2 = min(int(max(all_x2) + 1.5), slitlength)

        fit_it = fitting.FittingWithOutlierRemoval(fitting.LinearLSQFitter(),
                                                   outlier_func=sigma_clip,
                                                   sigma_upper=3,
                                                   sigma_lower=None)

        # If we don't have a VAR plane, assume uniform variance based
        # on the pixel-to-pixel variations in the data
        if var is None:
            var_model = models.Const1D(
                sigma_clipped_stats(data, mask=mask)[2]**2)
            var = np.full_like(data[ix1:ix2], var_model.amplitude)
            var_mask = np.zeros_like(var, dtype=bool)
        else:
            mvar_init = models.Polynomial1D(degree=1)
            var_model, var_mask = fit_it(
                mvar_init, np.ma.masked_where(mask.ravel(),
                                              abs(data).ravel()), var.ravel())
            var_mask = var_mask.reshape(var.shape)[ix1:ix2]
            var = np.where(var_mask, var[ix1:ix2], var_model(data[ix1:ix2]))

        if mask is None:
            mask = np.zeros((ix2 - ix1, npix), dtype=DQ.datatype)
        else:
            mask = mask[ix1:ix2]

        data = data[ix1:ix2]
        # Step 4; first calculation of spectrum. We don't do any masking
        # here since we need all the flux
        spectrum = data.sum(axis=0)
        weights = np.where(var > 0, var, 0)
        unmask = np.ones_like(data, dtype=bool)

        iter = 0
        while True:
            # Step 5: construct spatial profile for each wavelength pixel
            profile = np.divide(data,
                                spectrum,
                                out=np.zeros_like(data, dtype=np.float32),
                                where=spectrum > 0)
            profile_models = []
            for row, wt_row in zip(profile, weights):
                m_init = models.Chebyshev1D(degree=3, domain=[0, npix - 1])
                m_final, _ = fit_it(m_init, pixels, row, weights=wt_row)
                profile_models.append(m_final(pixels))
            profile_model_spectrum = np.array(
                [np.where(pm < 0, 0, pm) for pm in profile_models])
            sums = profile_model_spectrum.sum(axis=0)
            model_profile = divide0(profile_model_spectrum,
                                    sums,
                                    like_num=True)

            # Step 6: revise variance estimates
            var = np.where(var_mask | mask & BAD_BITS, var,
                           var_model(abs(model_profile * spectrum)))
            weights = divide0(1.0, var)

            # Step 7: identify cosmic ray hits: we're (probably) OK
            # to flag more than 1 per wavelength
            sigma_deviations = divide0(data - model_profile * spectrum,
                                       np.sqrt(var)) * unmask
            mask[sigma_deviations > cr_rej] |= DQ.cosmic_ray
            # most_deviant = np.argmax(sigma_deviations, axis=0)
            # for i, most in enumerate(most_deviant):
            #    if sigma_deviations[most, i] > cr_rej:
            #        mask[most, i] |= DQ.cosmic_ray

            last_unmask = unmask
            unmask = (mask & BAD_BITS) == 0
            spec_numerator = np.sum(unmask * model_profile * data * weights,
                                    axis=0)
            spec_denominator = np.sum(unmask * model_profile**2 * weights,
                                      axis=0)
            self.data = divide0(spec_numerator, spec_denominator)
            self.var = divide0(np.sum(unmask * model_profile, axis=0),
                               spec_denominator)
            self.mask = np.bitwise_and.reduce(mask, axis=0)
            spectrum = self.data

            iter += 1
            # An unchanged mask means XORing always produces False
            if ((np.sum(unmask ^ last_unmask) == 0)
                    or (max_iters is not None and iter > max_iters)):
                break
def create_polynomial_transform(transform,
                                in_coords,
                                ref_coords,
                                order=3,
                                max_iters=5,
                                match_radius=0.1,
                                clip=True,
                                log=None):
    """
    This function maps a set of 2D input coordinates to a set of 2D reference
    coordiantes using a pair of Polynomial2D object (one for each ordinate),
    given an initial transforming model.

    Parameters
    ----------
    transform : astropy.models.Model
        the initial guess of the transform between coordinate frames
    in_coords : 2-tuple of sequences
        input coordinates being mapped to reference
    ref_coords : 2-tuple of sequences
        reference coordinates
    order : int
        order of polynomial fit in each ordinate
    max_iters : int
        maximum number of iterations to perform
    match_radius : float
        matching radius for sources (in units of the reference coords)
    clip : bool
        sigma-clip sources after matching?
    log : logging object

    Returns
    -------
    transform : Model
        a model (and its inverse) to map in_coords to ref_coords
    matched: ndarray
        matched incoord for each refcoord
    """
    affine = adwcs.calculate_affine_matrices(transform, shape=(100, 100))
    num_params = [
        len(models.Polynomial2D(degree=i).parameters) for i in range(order + 1)
    ]

    orig_order = last_order = order
    xref, yref = ref_coords
    xin, yin = in_coords
    if clip:
        fit_it = fitting.FittingWithOutlierRemoval(fitting.LinearLSQFitter(),
                                                   sigma_clip,
                                                   sigma=3)
    else:
        fit_it = fitting.LinearLSQFitter()

    matched = match_sources((xref, yref),
                            transform(xin, yin),
                            radius=match_radius)
    num_matched = np.sum(matched >= 0)
    niter = 0
    while True:
        # No point trying to compute a more complex model if it will
        # be insufficiently constrained
        order = min(np.searchsorted(num_params, num_matched, side="right"),
                    orig_order)
        if order < last_order:
            log.warning(f"Downgrading fit to order {order} due to "
                        "limited number of matches.")
        elif order > last_order:
            log.stdinfo(f"Upgrading fit to order {order} due to "
                        "increased number of matches.")

        xmodel = models.Polynomial2D(degree=order,
                                     c0_0=affine.offset[1],
                                     c1_0=affine.matrix[1, 1],
                                     c0_1=affine.matrix[1, 0])
        ymodel = models.Polynomial2D(degree=order,
                                     c0_0=affine.offset[0],
                                     c1_0=affine.matrix[0, 1],
                                     c0_1=affine.matrix[0, 0])
        old_num_matched = num_matched
        xobj_matched, yobj_matched = [], []
        xref_matched, yref_matched = [], []
        for i, m in enumerate(matched):
            if m >= 0:
                xref_matched.append(xref[i])
                yref_matched.append(yref[i])
                xobj_matched.append(xin[m])
                yobj_matched.append(yin[m])
        xmodel = fit_it(xmodel, np.array(xobj_matched), np.array(yobj_matched),
                        xref_matched)
        ymodel = fit_it(ymodel, np.array(xobj_matched), np.array(yobj_matched),
                        yref_matched)
        if clip:
            xmodel, ymodel = xmodel[0], ymodel[0]
        transform = models.Mapping((0, 1, 0, 1)) | (xmodel & ymodel)
        matched = match_sources((xref, yref),
                                transform(xin, yin),
                                radius=match_radius)
        num_matched = np.sum(matched >= 0)
        last_order = order
        niter += 1
        log.debug(f"Iteration {niter}: Matched {num_matched} objects")
        if num_matched == old_num_matched or niter > max_iters:
            break
    xmodel_inv = fit_it(xmodel, np.array(xref_matched), np.array(yref_matched),
                        xobj_matched)
    ymodel_inv = fit_it(ymodel, np.array(xref_matched), np.array(yref_matched),
                        yobj_matched)
    if clip:
        xmodel_inv, ymodel_inv = xmodel_inv[0], ymodel_inv[0]
    transform.inverse = models.Mapping(
        (0, 1, 0, 1)) | (xmodel_inv & ymodel_inv)
    return transform, matched
Example #28
0
    def fit_refraction_function(self,
                                steps=10,
                                plot=False,
                                sample=None,
                                debug=False):
        """
        Fits a refraction function using a 3rd order Legendre
        Polynomial to the x and y pixel offsets caused by
        atmospheric refraction.

        Parameters
        ----------
        steps : int
            Number of segments of the data cube to consider. The
            larger this number, the finer the detail in fitting
            offsets.
        plot : bool
            Plots the function and the corresponding data points.
        sample : tuple, (w_0, w_1)
            Wavelength interval to be considered in the fit.
        debug : bool
            Plots debugging graphs to confirm that the shifts
            provided are actually matching the reference.

        Returns
        -------
        None
        """
        data = copy.deepcopy(self.science)

        d = np.array(
            [ma.median(_, axis=0) for _ in np.array_split(data, steps)])
        planes = np.array([((_[-1] + _[0]) / 2)
                           for _ in np.array_split(self.wavelength, steps)])

        for i, j in enumerate(d):
            d[i] /= j.max()

        md = d[int(len(d) / 2.0)]
        mid_point = planes[int(len(d) / 2.0)]

        if sample is None:
            sample = self.wavelength[[0, -1]]

        sample_mask = (planes >= sample[0]) & (planes <= sample[1])
        d = d[sample_mask]
        planes = planes[sample_mask]

        x_off, y_off = self._check_registration(reference=md, images=d)
        x_off *= self.sampling
        y_off *= self.sampling

        offsets, angle = self._offsets_rotation(x_off, y_off)
        self.refraction_angle = angle

        if debug:
            print(self.file_name)
            print('OFFSETS')
            print(offsets)

        model = DifferentialRefraction(temperature=self.temperature,
                                       pressure=self.pressure,
                                       air_mass=self.air_mass,
                                       wl_0=mid_point)
        model.wl_0.fixed = True
        fitter = fitting.FittingWithOutlierRemoval(fitting.SLSQPLSQFitter(),
                                                   sigma_clip,
                                                   niter=3,
                                                   sigma=3.0)
        rejected, shift = fitter(model, planes, offsets, acc=1e-12)

        if plot:
            fig, ax = plt.subplots(1, 1, sharex='col')

            ax.scatter(planes, offsets, c=planes)
            ax.set_ylabel('Differential refraction (arcsec)')
            ax.set_xlabel('Wavelength')
            ax.plot(self.wavelength, shift(self.wavelength))
            pars = [getattr(shift, _).value for _ in ['air_mass', 'wl_0']]
            pars.append(np.rad2deg(angle))
            ax.set_title(
                'secz = {:.2f}; wl_0 = {:.0f}; angle = {:.2f}'.format(*pars))
            ax.grid()

            plt.show()

        self.atmospheric_shift = shift

        if debug:
            self._debug_plots(d, planes)
Example #29
0
    def cal_color(self,
                  matched,
                  m_inst,
                  filt,
                  color,
                  C=None,
                  mlim=[14, 18],
                  gmi_lim=[0.2, 3.0]):
        """Estimate calibration constant with color correction.

        Parameters
        ----------
        matched : array-like
            Object IDs matched to sources.  May be a
            `~numpy.ma.MaskedArray`.

        m_inst : array-like
            Instrumental magnitudes for each source in matched.

        filt : string
            Filter to calibrate to, e.g., 'r'.

        color : string
            Color to consider, e.g., 'g-r'.

        C : float, optional
            Set to a value to hold the color correction fixed.

        mlim : list, optional
            Only fit stars with this magnitude range in filter ``filt``.

        gmi_lim : list, optional
            Only fit stars with this g-i color range, or `None` to disable.

        Returns
        -------
        zp, C, unc : float
            Zero-point magnitude, color slope, and uncertainty.
                m - m_inst = C * color + zp

        m, cindex : MaskedArray
            Catalog magnitude and color index.

        gmi : ndarray
            g-i color for each source.

        """

        if filt not in self.table.filter2col:
            raise ValueError('Filter must be one of {}.'.format(
                self.table.filter2col.keys()))

        blue, red = color.split('-')
        if gmi_lim is None:
            limits = [-np.inf, np.inf, min(mlim), max(mlim)]
        else:
            limits = [min(gmi_lim), max(gmi_lim), min(mlim), max(mlim)]

        columns = ("{filt[mag]},{filt[err]},{b[mag]}-{r[mag]},"
                   "{g[mag]}-{i[mag]}").format(
                       filt=self.table.filter2col[filt],
                       b=self.table.filter2col[blue],
                       r=self.table.filter2col[red],
                       g=self.table.filter2col['g'],
                       i=self.table.filter2col['i'])
        cat = self.lookup(matched, columns)

        m = np.ma.MaskedArray(np.zeros(len(matched)),
                              mask=np.ones(len(matched), bool))
        gmi = np.zeros_like(m.data)
        cindex = m.copy()
        for i in range(len(cat)):
            if len(cat[i]) > 0:
                m[i], merr, cindex[i], gmi[i] = cat[i]
                if all(
                    (gmi[i] >= limits[0], gmi[i] <= limits[1],
                     m[i] >= limits[2], m[i] <= limits[3], m[i] / merr > 2)):
                    m.mask[i] = False
                    cindex.mask[i] = False
                else:
                    m.mask[i] = True
                    cindex.mask[i] = True

        dm = m - m_inst

        model = models.Linear1D(slope=0, intercept=28)
        if C is not None:
            model.slope.value = C
            model.slope.fixed = True

        fitter = fitting.FittingWithOutlierRemoval(fitting.LinearLSQFitter(),
                                                   sigma_clip)

        i = np.isfinite(dm) * ~dm.mask
        if sum(i) == 0:
            raise CalibrationError('All sources masked.')

        if (astropy_version[0] > 3
                or (astropy_version[0] == 3 and astropy_version[1] >= 1)):
            # Return order changed in astropy 3.1
            # (http://docs.astropy.org/en/stable/changelog.html#id10)
            # Also now returns a boolean mask array rather than a
            # MaskedArray of the data which could be applied back to
            # reconstuct 'line' if needed (not currently used)
            fit, mask = fitter(model, cindex[i], dm[i])
        else:
            line, fit = fitter(model, cindex[i], dm[i])
        C = fit.slope.value
        zp = fit.intercept.value
        cal_unc = sigma_clipped_stats((dm - fit(cindex))[i])[2]

        return zp, C, cal_unc, m, cindex, gmi
Example #30
0
    def _fit(self, image, weights=None, plot=False):

        # Convert array-like input to a MaskedArray internally, to ensure it's
        # an `ndarray` instance and that any mask gets passed through to the
        # fitter:
        origim = image  # plotting works with the original image co-ords
        image = np.ma.masked_array(image)

        # Determine how many pixels we're fitting each vector over:
        try:
            npix = image.shape[self.axis]
        except IndexError:
            raise ValueError(
                'axis={0} out of range for input shape {1}'.format(
                    self.axis, image.shape))

        # Define pixel grid to fit on:
        points = (np.arange(npix, dtype=np.int16)
                  if self.points is None else self.points)
        if self.domain is None:
            self.domain = (min(points), max(points))

        # Classify the model to be fitted:
        try:
            astropy_model = issubclass(self.model_class, Model)
        except TypeError:
            astropy_model = False

        # Convert user regions to a Boolean mask for slicing:
        user_reg = ~at.create_mask_from_regions(points, self._slices)

        # Record the actual fitted, inclusive ranges in 1-indexed pixels for
        # this dataset (with no wildcards or adjacent/overlapping ranges etc.),
        # mostly for plot annotation. Find the starting index of each selected
        # or omitted range in user_reg (considering regions outside the array
        # False and starting from the first True), then subtract 1 from every
        # second index, pair them to get (start, end) ranges and add back the
        # origin of 1:
        reg_changes = np.where(
            np.concatenate((user_reg[:1], user_reg[1:] != user_reg[:-1],
                            user_reg[-1:])))[0]
        self.regions_pix = tuple(
            (start, end)
            for start, end in zip(reg_changes[::2] + 1, reg_changes[1::2]))
        self.fitted_regions = tuple(
            (points[start], points[end])
            for start, end in zip(reg_changes[::2], reg_changes[1::2] - 1))

        # To support fitting any axis of an N-dimensional array, we must
        # flatten all the other dimensions into a single "model set axis"
        # first; it's about 10-15% more efficient to stack astropy models along
        # the second axis (for a 3k x 2k image), because that's what the linear
        # fitter does internally, but for general callable functions we stack
        # along the first axis in order to loop over the fits easily:
        if astropy_model:
            ax_before = 0
            stack_shape = (npix, ) if image.size == npix else (npix, -1)
        else:
            ax_before = image.ndim
            stack_shape = (-1, npix)
        image = np.rollaxis(image, self.axis, ax_before)
        self._tmpshape = image.shape
        image = image.reshape(stack_shape)
        if weights is not None:
            weights = np.rollaxis(np.array(weights), self.axis,
                                  ax_before).reshape(stack_shape)

        # Record intermediate array properties for later evaluation of models
        # onto the same grid, where only a subset of rows/cols may have been
        # fitted due to some being entirely masked:
        self._stack_shape = image.shape
        self._dtype = image.dtype if image.dtype.kind == 'f' else np.float32

        # Create a full-sized mask within which the fitter will populate the
        # user-specified region(s) and the rest will remain masked out:
        mask = np.ones(image.shape, dtype=bool)

        # Branch pending on whether we're using an AstroPy model or some other
        # supported fitting function (principally splines):
        if astropy_model:

            # Treat single model specially because FittingWithOutlierRemoval
            # fails for "1-model sets" and it should be more efficient anyway:
            image_to_fit = image
            if image.ndim == 1:
                n_models = 1
            elif image.mask is np.ma.nomask:
                n_models = image.shape[1]
            else:
                # remove fully masked columns otherwise this will lead to
                # Runtime warnings from Numpy because of divisions by zero.
                self._good_cols = (~image.mask).sum(axis=0) > self.order
                n_models = np.sum(self._good_cols)
                if n_models < image.shape[1]:
                    image_to_fit = image[:, self._good_cols]
                    if weights is not None:
                        weights = weights[:, self._good_cols]

            model_set = self.model_class(
                degree=self.order,
                n_models=n_models,
                domain=self.domain,
                model_set_axis=(None if n_models == 1 else 1),
                **self.model_args)

            # Configure iterative linear fitter with rejection:
            fitter = fitting.FittingWithOutlierRemoval(
                fitting.LinearLSQFitter(),
                sigma_clip,
                niter=self.niter,
                # additional args are passed to outlier_func, i.e. sigma_clip
                sigma_lower=self.sigma_lower,
                sigma_upper=self.sigma_upper,
                maxiters=1,
                cenfunc='mean',
                stdfunc='std',
                grow=self.grow  # requires AstroPy 4.2 (#10613)
            )

            # Fit the pixel data with rejection of outlying points:
            fitted_models, fitted_mask = fitter(
                model_set,
                points[user_reg],
                image_to_fit[user_reg],
                weights=None if weights is None else weights[user_reg])

            # Incorporate mask for fitted columns into the full-sized mask:
            if image.ndim > 1 and n_models < image.shape[1]:
                # this is quite ugly, but seems the best way to assign to an
                # array with a mask on both dimensions. This is equivalent to:
                #   mask[user_reg, masked_cols] = fitted_mask
                mask[user_reg[:, None] & self._good_cols] = fitted_mask.flat
            else:
                mask[user_reg] = fitted_mask

        else:
            max_order = len(points) - self.model_args["k"]
            if self.order is not None and self.order > max_order:
                self.order = max_order

            # If there are no weights, produce a None for every row:
            weights = iter(lambda: None, True) if weights is None else weights

            fitted_models = []

            for n, (imrow, wrow) in enumerate(zip(image, weights)):

                # Deal with weights being None or all undefined in regions
                # without data (should we allow for NaNs as well?). The scipy
                # spline-fitting routines state that weights should be inverse
                # standard deviation, whereas fit_1D takes inverse-variance.
                wrow = (wrow[user_reg]
                        if wrow is not None and np.any(wrow) else None)

                # Could generalize this a bit further using another dict to map
                # parameter names in function_map, eg. weights -> w?
                single_model = self.model_class(points[user_reg],
                                                imrow[user_reg],
                                                order=self.order,
                                                w=wrow,
                                                niter=self.niter,
                                                grow=int(self.grow),
                                                sigma_lower=self.sigma_lower,
                                                sigma_upper=self.sigma_upper,
                                                maxiters=1,
                                                **self.model_args)
                fitted_models.append(single_model)

                # Retrieve the mask from the spline object, but discard the
                # fitted values because they only apply to a subsection
                # (user_reg) of the original grid, rather than whatever points
                # the user might request, and re-using them where possible only
                # improves performance by ~1% for a single fit & evaluation:
                mask[n][user_reg] = single_model.mask
                single_model.data = None

        # Save the set of fitted models in the flattened co-ordinate system,
        # to allow later (re-)evaluation at arbitrary points:
        self._models = fitted_models

        # Convert the mask to the ordering & shape of the input array and
        # save it. Calculate rms.
        mask = mask.reshape(self._tmpshape)
        if astropy_model:
            start = (self.axis + 1) or mask.ndim
            self.mask = np.rollaxis(mask, 0, start)
            rms = (np.rollaxis(image.reshape(self._tmpshape), 0, start) -
                   self.evaluate())[~self.mask].std()
        else:
            self.mask = np.rollaxis(mask, -1, self.axis)
            rms = (np.rollaxis(image.reshape(self._tmpshape), -1, self.axis) -
                   self.evaluate())[~self.mask].std()
        self.rms = rms

        # Plot the fit:
        if plot:
            self._plot(origim, index=None if plot is True else plot)