def _make_reference_gwcs_wcs(fits_hdr): hdr = fits.Header.fromfile(get_pkg_data_filename(fits_hdr)) fw = fitswcs.WCS(hdr) unit_conv = Scale(1.0 / 3600.0, name='arcsec_to_deg_1D') unit_conv = unit_conv & unit_conv unit_conv.name = 'arcsec_to_deg_2D' unit_conv_inv = Scale(3600.0, name='deg_to_arcsec_1D') unit_conv_inv = unit_conv_inv & unit_conv_inv unit_conv_inv.name = 'deg_to_arcsec_2D' c2s = CartesianToSpherical(name='c2s', wrap_lon_at=180) s2c = SphericalToCartesian(name='s2c', wrap_lon_at=180) c2tan = ((Mapping((0, 1, 2), name='xyz') / Mapping( (0, 0, 0), n_inputs=3, name='xxx')) | Mapping((1, 2), name='xtyt')) c2tan.name = 'Cartesian 3D to TAN' tan2c = (Mapping((0, 0, 1), n_inputs=2, name='xtyt2xyz') | (Const1D(1, name='one') & Identity(2, name='I(2D)'))) tan2c.name = 'TAN to cartesian 3D' tan2c.inverse = c2tan c2tan.inverse = tan2c aff = AffineTransformation2D(matrix=fw.wcs.cd) offx = Shift(-fw.wcs.crpix[0]) offy = Shift(-fw.wcs.crpix[1]) s = 5e-6 scale = Scale(s) & Scale(s) det2tan = (offx & offy) | scale | tan2c | c2s | unit_conv_inv taninv = s2c | c2tan tan = Pix2Sky_TAN() n2c = RotateNative2Celestial(fw.wcs.crval[0], fw.wcs.crval[1], 180) wcslin = unit_conv | taninv | scale.inverse | aff | tan | n2c sky_frm = cf.CelestialFrame(reference_frame=coord.ICRS()) det_frm = cf.Frame2D(name='detector') v2v3_frm = cf.Frame2D(name="v2v3", unit=(u.arcsec, u.arcsec), axes_names=('x', 'y'), axes_order=(0, 1)) pipeline = [(det_frm, det2tan), (v2v3_frm, wcslin), (sky_frm, None)] gw = gwcs.WCS(input_frame=det_frm, output_frame=sky_frm, forward_transform=pipeline) gw.crpix = fw.wcs.crpix gw.crval = fw.wcs.crval gw.bounding_box = ((-0.5, fw.pixel_shape[0] - 0.5), (-0.5, fw.pixel_shape[1] - 0.5)) return gw
def _tpcorr_init(v2_ref, v3_ref, roll_ref): s2c = SphericalToCartesian(name='s2c', wrap_lon_at=180) c2s = CartesianToSpherical(name='c2s', wrap_lon_at=180) unit_conv = Scale(1.0 / 3600.0, name='arcsec_to_deg_1D') unit_conv = unit_conv & unit_conv unit_conv.name = 'arcsec_to_deg_2D' unit_conv_inv = Scale(3600.0, name='deg_to_arcsec_1D') unit_conv_inv = unit_conv_inv & unit_conv_inv unit_conv_inv.name = 'deg_to_arcsec_2D' affine = AffineTransformation2D(name='tp_affine') affine_inv = AffineTransformation2D(name='tp_affine_inv') rot = RotationSequence3D([v2_ref, -v3_ref, roll_ref], 'zyx', name='det_to_optic_axis') rot_inv = rot.inverse rot_inv.name = 'optic_axis_to_det' # projection submodels: c2tan = ((Mapping((0, 1, 2), name='xyz') / Mapping( (0, 0, 0), n_inputs=3, name='xxx')) | Mapping((1, 2), name='xtyt')) c2tan.name = 'Cartesian 3D to TAN' tan2c = (Mapping((0, 0, 1), n_inputs=2, name='xtyt2xyz') | (Const1D(1, name='one') & Identity(2, name='I(2D)'))) tan2c.name = 'TAN to cartesian 3D' total_corr = (unit_conv | s2c | rot | c2tan | affine | tan2c | rot_inv | c2s | unit_conv_inv) total_corr.name = 'JWST tangent-plane linear correction. v1' inv_total_corr = (unit_conv | s2c | rot | c2tan | affine_inv | tan2c | rot_inv | c2s | unit_conv_inv) inv_total_corr.name = 'Inverse JWST tangent-plane linear correction. v1' # TODO # re-enable circular inverse definitions once # https://github.com/spacetelescope/asdf/issues/744 or # https://github.com/spacetelescope/asdf/issues/745 are resolved. # # inv_total_corr.inverse = total_corr total_corr.inverse = inv_total_corr return total_corr
def dva_corr_model(va_scale, v2_ref, v3_ref): """ Create transformation that accounts for differential velocity aberration (scale). Parameters ---------- va_scale : float, None Ratio of the apparent plate scale to the true plate scale. When ``va_scale`` is `None`, it is assumed to be identical to ``1`` and an ``astropy.modeling.models.Identity`` model will be returned. v2_ref : float, None Telescope ``v2`` coordinate of the reference point in ``arcsec``. When ``v2_ref`` is `None`, it is assumed to be identical to ``0``. v3_ref : float, None Telescope ``v3`` coordinate of the reference point in ``arcsec``. When ``v3_ref`` is `None`, it is assumed to be identical to ``0``. Returns ------- va_corr : astropy.modeling.CompoundModel, astropy.modeling.models.Identity A 2D compound model that corrects DVA. If ``va_scale`` is `None` or 1 then `astropy.modeling.models.Identity` will be returned. """ if va_scale is None or va_scale == 1: return Identity(2) if va_scale <= 0: raise ValueError( "'Velocity aberration scale must be a positive number.") va_corr = Scale(va_scale, name='dva_scale_v2') & Scale(va_scale, name='dva_scale_v3') if v2_ref is None: v2_ref = 0 if v3_ref is None: v3_ref = 0 if v2_ref == 0 and v3_ref == 0: return va_corr # NOTE: it is assumed that v2, v3 angles and va scale are small enough # so that for expected scale factors the issue of angle wrapping # (180 degrees) can be neglected. v2_shift = (1 - va_scale) * v2_ref v3_shift = (1 - va_scale) * v3_ref va_corr |= Shift(v2_shift, name='dva_v2_shift') & Shift( v3_shift, name='dva_v3_shift') va_corr.name = 'DVA_Correction' return va_corr
def test_name(): offx = Shift(1) scl = Scale(2) m = offx | scl scl.name = "scale" assert m.submodel_names == ('None_0', 'scale') assert m.name is None m.name = "M" assert m.name == "M" m1 = m.rename("M1") assert m.name == "M1" assert m1.name == "M1"
def test_name(): offx = Shift(1) scl = Scale(2) m = offx | scl scl.name = "scale" assert m._submodel_names == ('None_0', 'None_1') assert m.name is None m.name = "M" assert m.name == "M" m1 = m.rename("M1") assert m.name == "M" assert m1.name == "M1"
def _make_gwcs_wcs(fits_hdr): hdr = fits.Header.fromfile(get_pkg_data_filename(fits_hdr)) fw = fitswcs.WCS(hdr) a_order = hdr['A_ORDER'] a_coeff = {} for i in range(a_order + 1): for j in range(a_order + 1 - i): key = 'A_{:d}_{:d}'.format(i, j) if key in hdr: a_coeff[key] = hdr[key] b_order = hdr['B_ORDER'] b_coeff = {} for i in range(b_order + 1): for j in range(b_order + 1 - i): key = 'B_{:d}_{:d}'.format(i, j) if key in hdr: b_coeff[key] = hdr[key] cx = {"c" + k[2:]: v for k, v in a_coeff.items()} cy = {"c" + k[2:]: v for k, v in b_coeff.items()} sip_distortion = ((Shift(-fw.wcs.crpix[0]) & Shift(-fw.wcs.crpix[1])) | Mapping((0, 1, 0, 1)) | (polynomial.Polynomial2D(a_order, **cx, c1_0=1) & polynomial.Polynomial2D(b_order, **cy, c0_1=1)) | (Shift(fw.wcs.crpix[0]) & Shift(fw.wcs.crpix[1]))) y, x = np.indices(fw.array_shape) unit_conv = Scale(1.0 / 3600.0, name='arcsec_to_deg_1D') unit_conv = unit_conv & unit_conv unit_conv.name = 'arcsec_to_deg_2D' unit_conv_inv = Scale(3600.0, name='deg_to_arcsec_1D') unit_conv_inv = unit_conv_inv & unit_conv_inv unit_conv_inv.name = 'deg_to_arcsec_2D' c2s = CartesianToSpherical(name='c2s', wrap_lon_at=180) s2c = SphericalToCartesian(name='s2c', wrap_lon_at=180) c2tan = ((Mapping((0, 1, 2), name='xyz') / Mapping( (0, 0, 0), n_inputs=3, name='xxx')) | Mapping((1, 2), name='xtyt')) c2tan.name = 'Cartesian 3D to TAN' tan2c = (Mapping((0, 0, 1), n_inputs=2, name='xtyt2xyz') | (Const1D(1, name='one') & Identity(2, name='I(2D)'))) tan2c.name = 'TAN to cartesian 3D' tan2c.inverse = c2tan c2tan.inverse = tan2c aff = AffineTransformation2D(matrix=fw.wcs.cd) offx = Shift(-fw.wcs.crpix[0]) offy = Shift(-fw.wcs.crpix[1]) s = 5e-6 scale = Scale(s) & Scale(s) sip_distortion |= (offx & offy) | scale | tan2c | c2s | unit_conv_inv taninv = s2c | c2tan tan = Pix2Sky_TAN() n2c = RotateNative2Celestial(fw.wcs.crval[0], fw.wcs.crval[1], 180) wcslin = unit_conv | taninv | scale.inverse | aff | tan | n2c sky_frm = cf.CelestialFrame(reference_frame=coord.ICRS()) det_frm = cf.Frame2D(name='detector') v2v3_frm = cf.Frame2D(name="v2v3", unit=(u.arcsec, u.arcsec), axes_names=('x', 'y'), axes_order=(0, 1)) pipeline = [(det_frm, sip_distortion), (v2v3_frm, wcslin), (sky_frm, None)] gw = gwcs.WCS(input_frame=det_frm, output_frame=sky_frm, forward_transform=pipeline) gw.crpix = fw.wcs.crpix gw.crval = fw.wcs.crval gw.bounding_box = ((-0.5, fw.pixel_shape[0] - 0.5), (-0.5, fw.pixel_shape[1] - 0.5)) # sanity check: for _ in range(100): x = np.random.randint(1, fw.pixel_shape[0]) y = np.random.randint(1, fw.pixel_shape[1]) assert np.allclose(gw(x, y), fw.all_pix2world(x, y, 1), rtol=0, atol=1e-11) return gw