Example #1
0
def main():

    # Example use case of the synapse detection pipeline
    # Location of Queries
    queryFN = 'example_queries.json'

    # List of Queries
    list_of_queries = syn.loadQueriesJSON(queryFN)

    # Test the first query
    query = list_of_queries[0]

    # Load the data
    synaptic_volumes = da.load_tiff_from_query(query)

    # Run Synapse Detection
    # Takes ~5 minutes to run
    result_vol = syn.getSynapseDetections(synaptic_volumes, query)

    # Verify Output
    label_vol = measure.label(result_vol > 0.9)
    stats = measure.regionprops(label_vol)
    print(len(stats))  # output should be 5440
def run_synapse_detection(atet_input):
    """
    Run synapse detection and result evalution.  The parameters need to be rethought 

    Parameters
    -------------------
    atet_input : dict 

    Returns
    -------------------
    output_dict : dict 

    """

    query = atet_input['query']
    queryID = atet_input['queryID']
    nQuery = atet_input['nQuery']
    resolution = atet_input['resolution']
    data_location = atet_input['data_location']
    data_region_location = atet_input['data_region_location']
    output_foldername = atet_input['output_foldername']
    region_name = atet_input['region_name']
    layer_mask_str = atet_input['mask_str']
    dapi_mask_str = atet_input['dapi_mask_str']
    mouse_number = atet_input['mouse_number']

    # Load the data
    synaptic_volumes = da.load_tiff_from_query(query, data_region_location)

    # Load layer mask
    if layer_mask_str != -1:
        layer_mask = Image.open(layer_mask_str)
        layer_mask = np.array(layer_mask)

    # Load DAPI mask
    dapi_mask_fn = os.path.join(dapi_mask_str,
                                str(mouse_number) + 'ss-DAPI-mask.tiff')
    dapi_mask = da.imreadtiff(dapi_mask_fn)

    # Merge DAPI mask and Layer 4 mask
    if layer_mask_str != -1:
        combined_mask = merge_DAPI_L4_masks(layer_mask, dapi_mask)
    else:
        dapi_mask = dapi_mask.astype(np.bool)
        combined_mask = np.logical_not(dapi_mask)  # keep portions without dapi

    # Mask data
    synaptic_volumes = mask_synaptic_volumes(synaptic_volumes, combined_mask)

    volume_um3 = get_masked_volume(synaptic_volumes, combined_mask, resolution)
    print(volume_um3)

    # Run Synapse Detection
    print('running synapse detection')
    resultvol = syn.getSynapseDetections(synaptic_volumes, query)

    # Save the probability map to file, if you want
    outputNPYlocation = os.path.join(data_location, output_foldername,
                                     region_name)
    syn.saveresultvol(resultvol, outputNPYlocation, 'query_', queryID)

    thresh = 0.9
    queryresult = compute_measurements(resultvol, query, volume_um3, thresh)

    output_dict = {
        'queryID': queryID,
        'query': query,
        'queryresult': queryresult
    }
    return output_dict
Example #3
0
def main():
    """
    run site 3 synapse detection
    """
    # Load metadata
    metadata_fn = '/Users/anish/Documents/Connectome/SynapseAnalysis/data/M247514_Rorb_1/Site3Align2/site3_metadata.json'
    #metadata_fn = 'site3_metadata_TdTomato.json'
    metadata = syn.loadMetadata(metadata_fn)

    datalocation = metadata['datalocation']
    outputNPYlocation = metadata['outputNPYlocation']
    query_fn = metadata['querylocation']

    # List of Queries
    listOfQueries = syn.loadQueriesJSON(query_fn)
    print("Number of Queries: ", len(listOfQueries))

    for n in range(0, len(listOfQueries)):
        query = listOfQueries[n]
        print(query)

        # Load the data
        synapticVolumes = da.loadTiffSeriesFromQuery(query, datalocation)

        # Run Synapse Detection
        # Takes ~5 minutes to run
        resultVol = syn.getSynapseDetections(synapticVolumes, query)

        # Save the probability map to file, if you want
        syn.saveresultvol(resultVol, outputNPYlocation, 'resultVol', n)

        # Save the thresholded results as annotation objects
        # in a json file
        # pd.probMapToJSON(resultVol, metadata, query, n)
    """
    Evaluation of site3 synapse detection results
    """

    # Load metadata
    metadataFN = 'site3_metadata.json'
    metadata = syn.loadMetadata(metadataFN)
    outputJSONlocation = metadata['outputJSONlocation']

    queryFN = metadata['querylocation']
    evalparam = metadata['evalparam']

    # List of Queries
    listOfQueries = syn.loadQueriesJSON(queryFN)
    listOfThresholds = []
    listOfThresholds_to_text = []
    listOfQueries_to_text = []
    listofevals = []
    thresh_list = [0.7, 0.8, 0.9]
    # Evaluate each query individually
    for n, query in enumerate(listOfQueries):
        listOfThresholds.append(query['thresh'])

        for thresh in thresh_list:
            listOfThresholds_to_text.append(thresh)
            query['thresh'] = thresh
            print(query)
            listOfQueries_to_text.append(query)
            queryresult = pd.combineResultVolumes([n], [thresh], metadata,
                                                  evalparam)
            listofevals.append(queryresult)

    pd.printEvalToText(listofevals, listOfQueries_to_text,
                       listOfThresholds_to_text)

    # Combine Queries
    evaluation_parameters = metadata['evalparam']

    pd.combineResultVolumes(list(range(0, len(listOfQueries))),
                            listOfThresholds, metadata, evaluation_parameters)