def multiclass_classification(attention_model, train_loader, epochs=5, use_regularization=True, C=1.0, clip=True): loss = torch.nn.NLLLoss() optimizer = torch.optim.RMSprop(attention_model.parameters()) train(attention_model, train_loader, loss, optimizer, epochs, use_regularization, C, clip)
def multilabel_classification(attention_model, train_loader, test_loader, epochs, GPU=True): loss = torch.nn.BCELoss() opt = torch.optim.Adam(attention_model.parameters(), lr=0.001, betas=(0.9, 0.99)) train(attention_model, train_loader, test_loader, loss, opt, epochs, GPU)
def binary_classfication(attention_model, train_loader, epochs=5, use_regularization=True, C=1.0, clip=True): loss = torch.nn.BCELoss() optimizer = torch.optim.RMSprop(attention_model.parameters()) train(params_set, attention_model, train_loader, loss, optimizer, epochs, use_regularization, C, clip)
def multiclass_classification(attention_model,train_loader,epochs=5,use_regularization=True,C=1.0,clip=True): loss = torch.nn.NLLLoss() optimizer = torch.optim.RMSprop(attention_model.parameters()) train(attention_model,train_loader,loss,optimizer,epochs,use_regularization,C,clip)