Example #1
0
    def test_concatenate(self):
        values = np.random.randn(20).reshape(4, 5)
        stats_list = [stats.DataStats(float(x.mean()), float(x.var()), x.min(), x.max(), x.size) for x in values]

        concatenated = stats.DataStats.concatenate(stats_list)

        assert concatenated.mean == pytest.approx(np.mean(values))
        assert concatenated.var == pytest.approx(np.var(values))
        assert concatenated.min == pytest.approx(np.min(values))
        assert concatenated.max == pytest.approx(np.max(values))
        assert concatenated.num == values.size
Example #2
0
    def stats_per_utterance(self):
        """
        Return statistics calculated for all samples of each utterance in the corpus.

        Returns:
            dict: A dictionary containing a DataStats object for each utt.
        """

        all_stats = {}

        for utterance in self.utterances.values():
            data = utterance.read_samples()
            all_stats[utterance.idx] = stats.DataStats(float(np.mean(data)),
                                                       float(np.var(data)),
                                                       np.min(data),
                                                       np.max(data), data.size)

        return all_stats
Example #3
0
    def stats_per_key(self):
        """
        Return statistics calculated for each key in the container.

        Note:
            The feature container has to be opened in advance.

        Returns:
            dict: A dictionary containing a DataStats object for each key.
        """
        self.raise_error_if_not_open()

        all_stats = {}

        for key, data in self._file.items():
            data = data[()]
            all_stats[key] = stats.DataStats(float(np.mean(data)),
                                             float(np.var(data)), np.min(data),
                                             np.max(data), data.size)

        return all_stats
Example #4
0
    def stats_per_utterance(self):
        """
        Return statistics calculated for each utterance in the container.

        Note:
            The feature container has to be opened in advance.

        Returns:
            dict: A dictionary containing a DataStats object for each utterance.
        """
        self._check_is_open()

        all_stats = {}

        for utt_id, data in self._file.items():
            data = data[()]
            all_stats[utt_id] = stats.DataStats(float(np.mean(data)),
                                                float(np.var(data)),
                                                np.min(data), np.max(data),
                                                data.size)

        return all_stats
Example #5
0
 def test_values(self):
     s = stats.DataStats(2.3, 1.2, 4.0, -2, 99)
     assert np.array_equal(s.values, np.array([2.3, 1.2, 4.0, -2, 99]))
Example #6
0
    def test_to_dict(self):
        s = stats.DataStats(2.3, 1.2, -2, 4.0, 99)
        d = s.to_dict()

        assert d == {'mean': 2.3, 'var': 1.2, 'max': 4.0, 'min': -2, 'num': 99}