def test_sampling_rate_after_transform(transform): expected_sampling_rate = transform.transforms[-1].output_sampling_rate dataset = datasets.WhiteNoise(duration=0.5, sampling_rate=48000, transform=transform) sampling_rate = datasets.sampling_rate_after_transform(dataset) assert sampling_rate == expected_sampling_rate assert dataset.sampling_rate == expected_sampling_rate
def test_whitenoise(duration, sampling_rate, mean, stdev): dataset = datasets.WhiteNoise(duration=duration, sampling_rate=sampling_rate, mean=mean, stdev=stdev) noise, label = next(iter(dataset)) samples = int(np.ceil(duration * sampling_rate)) assert noise.shape == (1, samples) assert label == 'white noise' assert -1 <= np.max(np.abs(noise)) <= 1 assert len(dataset) == 1
noise, label = next(iter(dataset)) samples = int(np.ceil(duration * sampling_rate)) assert noise.shape == (1, samples) assert label == 'white noise' assert -1 <= np.max(np.abs(noise)) <= 1 assert len(dataset) == 1 # --- datasets/utils.py --- crop = transforms.RandomCrop(8192) resamp1 = transforms.Resample(48000, 44100) resamp2 = transforms.Resample(44100, 16000) t1 = transforms.Compose([crop, resamp1]) t2 = transforms.Compose([crop, resamp1, resamp2]) t3 = transforms.Compose([resamp1, crop, resamp2]) d0 = datasets.WhiteNoise(duration=0.5, sampling_rate=48000, transform=crop) d1 = datasets.WhiteNoise(duration=0.5, sampling_rate=48000, transform=t1) d2 = datasets.WhiteNoise(duration=0.5, sampling_rate=48000, transform=t2) d3 = datasets.WhiteNoise(duration=0.5, sampling_rate=48000, transform=t3) df_empty = pd.DataFrame() df_a = pd.DataFrame(data=[0], columns=['a']) df_ab = pd.DataFrame(data=[('0', 1)], columns=['a', 'b']) @pytest.mark.parametrize('list_of_datasets', [ (d2, d3), pytest.param([d0, d1], marks=xfail(raises=ValueError)) ]) def test_audioconcatdataset(list_of_datasets): datasets.AudioConcatDataset(list_of_datasets)