def __init__(self, data_path, config=None, datatype="categorical", training=True): """__init__. Args: data_path: Dataset Path which should be in structure way please see readme file for more details on structuring. config: Config file , a dict file contains all required attributes to configure. datatype: Dataset Type i.e (Bbox , Labels ,Segmentations) bbox dataset is object detection dataset which will be provided in form of [image,bboxs] or [image, class_targets,bbox_targets]. training: is pipeline in training mode or not? """ # bunch the config dict. config = Bunch(config) if not isinstance(data_path, str): msg = f"datapath should be str but pass {type(data_path)}." logging.error(msg) raise TypeError("Only str allowed") self._datatype = datatype self._data_path = data_path self.config = config self._training = training self._shuffle_buffer = None self._batch_size = self.config.get("batch_size", 32) self._image_size = self.config.get("image_size", [512, 512]) self._drop_remainder = self.config.get("drop_remainder", True) self.augmenter = augment.Augment(self.config, datatype)
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Create an Augmentation pipeline ! config = { "batch_size": 1, "image_size": [512, 512], "transformations": { "flip_left_right": None, "gridmask": None, "random_rotate": None, }, "categorical_encoding": "labelencoder", } config = Bunch(config) self.augmentor = augment.Augment(config) tf.compat.v1.random.set_random_seed(111111)