Example #1
0
def run_n_aug(x, y, n_aug, num_classes):  # data augmentation
    # x = augmentation.horizontal_flip(x)
    # x = augmentation.vertical_flip(x)
    # x = augmentation.random_crop(x)
    # x = augmentation.random_transfer(x)
    # x = augmentation.random_rotation(x)
    # x, y = augmentation.mixup(image=x, label=y, num_classes=num_classes)
    # x = augmentation.cutout(x)
    # x = augmentation.random_erasing(x)
    # x, y = augmentation.ricap(image_batch=x, label_batch=y, num_classes=num_classes)

    if n_aug == 1:
        x = augmentation.horizontal_flip(x)
        # x = augmentation.vertical_flip(x)
    elif n_aug == 2:
        x = augmentation.random_crop(x)
    elif n_aug == 3:
        x = augmentation.random_transfer(x)
    elif n_aug == 4:
        x = augmentation.random_rotation(x)
    elif n_aug == 5:
        x, y = augmentation.mixup(image=x, label=y, num_classes=num_classes)
    elif n_aug == 6:
        x = augmentation.cutout(x)
    elif n_aug == 7:
        x = augmentation.random_erasing(x)
    elif n_aug == 8:
        x, y = augmentation.ricap(image_batch=x,
                                  label_batch=y,
                                  num_classes=num_classes)
        x = to_var(x)
        y = to_var(y)
    elif n_aug == 12:
        x = augmentation.horizontal_flip(x)
        x = augmentation.random_crop(x)
    elif n_aug == 17:
        x = augmentation.horizontal_flip(x)
        x = augmentation.random_erasing(x)
    elif n_aug == 34:
        x = augmentation.random_transfer(x)
        x = augmentation.random_rotation(x)

    return x, y
Example #2
0
    def augmentation(self, X, Y):
        print('Augmentation model...')
        total = len(X)
        x_train, y_train = [], []

        for i in xrange(total):
            x, y = X[i], Y[i]
            #standart
            x_train.append(x)
            y_train.append(y)

            #            for _ in xrange(1):
            #                _x, _y = elastic_transform(x[0], y[0], 100, 20)
            #                x_train.append(_x.reshape((1,) + _x.shape))
            #                y_train.append(_y.reshape((1,) + _y.shape))

            #flip x
            x_train.append(flip_axis(x, 2))
            y_train.append(flip_axis(y, 2))
            #flip y
            x_train.append(flip_axis(x, 1))
            y_train.append(flip_axis(y, 1))
            #continue
            #zoom
            for _ in xrange(1):
                _x, _y = random_zoom(x, y, (0.9, 1.1))
                x_train.append(_x)
                y_train.append(_y)
            for _ in xrange(0):
                _x, _y = random_rotation(x, y, 5)
                x_train.append(_x)
                y_train.append(_y)
            #intentsity
            for _ in xrange(1):
                _x = random_channel_shift(x, 5.0)
                x_train.append(_x)
                y_train.append(y)

        x_train = np.array(x_train)
        y_train = np.array(y_train)

        print('x_trian: ', x_train.shape)

        return x_train, y_train
Example #3
0
def aug_train(split_dir, mode):
    train_dir = split_dir + os.sep + "train"

    for subdir, dirs, files in os.walk(train_dir):
        for f in files:
            file_path = subdir + os.sep + f
            if (is_image(f)):
                print(file_path)
                name, ext = os.path.splitext(f)
                img = cv2.imread(file_path)
                for i in range(1, 4):
                    rot_dir = (subdir + os.sep + name + "_aug_" + str(i + 1) +
                               ext)
                    if (mode == 'random'):
                        cv2.imwrite(rot_dir, aug.random_rotation(img))
                    elif (mode == 'strict'):
                        cv2.imwrite(rot_dir, aug.strict_rotation(img, i))
                    else:
                        print("The mode should be either random | strict")
                        sys.exit(1)