Example #1
0
                        nperseg=100)
print(t.shape, f.shape, Zxx.shape)
# print(f.shape, f[:10])
# print(t.shape, t[:10])
# print(Zxx.shape, Zxx[:10])
# print(len([stft**2 for stft in Zxx]), [stft**2 for stft in Zxx][:10])

signal_fig = FigData(
    xs=nst.samp_nums,
    ys=[nst.data],
    title=f"(a) Non stationary signal (samp rate = {samp_rate})",
    plot_type="plot",
    xlabel="Time (s)",
    ylabel="Amplitude")

stft_fig = apreset.stft_pcolormesh(t=t,
                                   f=f,
                                   Zxx=Zxx,
                                   title=f"(b) STFT Magnitude",
                                   yscale="linear",
                                   ylim=(0, 50),
                                   colorbar_params={"pad": 0.05})

aplot.single_subplots(grid_size=(1, 2),
                      fig_data={
                          (0, 0): signal_fig,
                          (0, 1): stft_fig
                      },
                      individual_figsize=(5, 3.5),
                      savefig_path="stft_sines.png")
Example #2
0
sine_fft_fig = FigData(xs=sine_fft_x[:sine_slice_num],
                       ys=np.abs(sine_fft[:sine_slice_num]),
                       title=sine_sum_fft_title,
                       options=["grid"],
                       **fft_axis_labels)

#
# Plot
#

aplot.single_subplots(grid_size=(3, 1),
                      fig_data={
                          (0, 0): cl_raw_fig,
                          (1, 0): cl_signal_fig,
                          (2, 0): cl_fft_fig
                      },
                      individual_figsize=(8, 2.8),
                      dpi=300,
                      savefig_path="Clarinet_FFT")

aplot.single_subplots(
    grid_size=(3, 1),
    fig_data={
        (0, 0): sine_raw_fig,
        (1, 0): sine_signal_fig,
        (2, 0): sine_fft_fig
    },
    individual_figsize=(12, 3),
    savefig_path=f"{str(sine_signal.sin_freqs).replace(' ', '')}Hz_Sine_Sum_FFT"
)
Example #3
0
    # Create figures
    figs[(row, col)] = FigData(xs=np.array(range(Nx)),
                               ys=[window_data[window_name]],
                               title=window)
    figs_response[(row, col)] = FigData(xs=np.array(freq),
                                        ys=[response],
                                        title=window,
                                        xlim=(-0.5, 0.5),
                                        ylim=(-120, 0))

#
# Plot window data
#

aplot.single_subplots(grid_size=(nrows, ncols),
                      fig_data=figs,
                      individual_figsize=(3.5, 1.6),
                      title="All Scipy Supported Windows",
                      xlabel="Sample",
                      ylabel="Amplitude",
                      savefig_path="scipy_windows")

aplot.single_subplots(grid_size=(nrows, ncols),
                      fig_data=figs_response,
                      individual_figsize=(3.5, 1.6),
                      title="Frequency Response of each window",
                      xlabel="Normalized frequency (cycles per sample)",
                      ylabel="Normalized magnitude (dB)",
                      savefig_path="scipy_windows_freq_responses")
Example #4
0
recon_fig = FigData(xs=trec,
                    ys=xrec,
                    title="Reconstructed after filtering:\n"
                    f"{scale_name} minor triads w/ inversions",
                    plot_type="plot",
                    xlabel="Time (s)",
                    ylabel="Amplitude")

#
# Display results
#

aplot.single_subplots(
    grid_size=(2, 2),
    fig_data={
        (0, 1): stft_fig,
        (1, 1): stftf_fig,
        (0, 0): signal_fig,
        (1, 0): recon_fig
    },
    individual_figsize=(6, 4),
    savefig_path=
    f"ISTFT_{window_name}_{window_length}_{int(overlap_percent*100)}%_Pure_{scale_name}_minor_chord_sampr={samp_rate}"
)

wav.write(
    f"audio/ISTFT_{window_name}_{window_length}_{int(overlap_percent * 100)}%_Pure_{scale_name}m",
    np.concatenate((nst.data, xrec)),
    samp_rate=samp_rate)
Example #5
0
    recon_stft_figs = [None for i in range(len(recon_stfts))]
    for i, recon_stft in enumerate(recon_stfts):
        recon_stft_figs[i] = apreset.stft_pcolormesh(
            t=t,
            f=f,
            Zxx=recon_stft,
            title=
            f"Separated source '{sep_names[i]}'\nat d={ds[i]} with width H={Hs[i]}",
            yscale="linear",
            ylim=ylim)
        fig_data[(2, i + 1)] = recon_stft_figs[i]

    # Plot null/peaks, src & source STFTs
    aplot.single_subplots(
        grid_size=(3, 4),
        fig_data=fig_data,
        individual_figsize=(6, 4),
        # savefig_path=f"ADRess_{channel}_{tech_name}.png"
    )

#
# Output audio
#

wav.write(f"audio/{name}_stereo", src.T, samp_rate=samp_rate)
wav.write(f"audio/{name}_left", left_signal, samp_rate=samp_rate)
wav.write(f"audio/{name}_right", right_signal, samp_rate=samp_rate)

for i, left_recon in enumerate(left_recons):
    wav.write(f"audio/{tech_name}_{short_sep_names[i]}",
              left_recon,
              samp_rate=samp_rate)
Example #6
0
fft_figs = [FigData(xs=[np.linspace(0, max_response_freq, 1024), x[:psns[i]+1]],
                    ys=[zp_responses[i][:1024], responses[i][:psns[i]+1]],
                    title=f"({fig_labels[i * 2 + 1]}) Magnitude of DFT ({freq * signals[i].duration} cycles)",
                    options=["grid", "xres"],
                    line_options=fft_line_options,
                    **fft_axis_labels)
            for i, x in enumerate(freqs)]
ws_fft_fig = FigData(xs=[np.linspace(0, max_response_freq, 1024), freqs[1][:psns[1]+1]],
                     ys=[wszp_response[:1024], ws_response[:psns[1]+1]],
                     title=f"(f) Magnitude of DFT (Windowed, {freq * signals[1].duration} cycles)",
                     options=["grid", "xres"],
                     line_options=fft_line_options,
                     **fft_axis_labels)

#
# Plot
#
aplot.single_subplots(grid_size=(3, 2),
                      fig_data={(0, 0): sig_figs[0],
                                (0, 1): fft_figs[0],
                                (1, 0): sig_figs[1],
                                (1, 1): fft_figs[1],
                                (2, 0): ws_fig,
                                (2, 1): ws_fft_fig},
                      individual_figsize=(5.5, 3),
                      title=f"{freq}Hz Sinusoid sampled at {samp_rate}Hz",
                      savefig_path="Spectral_Leakage"
                      )

Example #7
0
                          ys=[sig.data],
                          title=f"({chr(label)}) {name} of {note_names}",
                          plot_type="plot",
                          xlabel="Time (s)",
                          ylabel="Amplitude")
    label += 2

    fft_figs[i] = FigData(xs=fft_x[:slice_num],
                          ys=np.abs(ft) ** 2,
                          title=f"({chr(label)}) Fourier Transform Magnitude of {name}",
                          options=["grid"],
                          xlabel="Frequency (Hz)",
                          ylabel="Normalised Magnitude")

    label -= 1

# Plot
aplot.single_subplots(grid_size=(2, 2),
                      fig_data={(0, 0): sig_figs[0],
                                (0, 1): sig_figs[1],
                                (1, 0): fft_figs[0],
                                (1, 1): fft_figs[1]},
                      individual_figsize=(4, 2.5),
                      auto_timestamp=True,
                      savefig_path=f"{underline_note_names}_{round(duration*1000)}ms_{name}_FFT.png"
                      )

# Output wav
# wav.write(f"audio/{underline_note_names}_{round(duration*1000)}ms_melody", melody)
# wav.write(f"audio/{underline_note_names}_{round(duration*1000)}ms_chord", chord)
Example #8
0
                     plot_type="plot",
                     xlabel="Time (s)",
                     ylabel="Amplitude")

    fft_fig = FigData(xs=fft_x[:slice_num],
                      ys=np.abs(ws_ffts[seg])**2,
                      title="Fourier Transform Magnitude",
                      options=["grid"],
                      ylim=(-0.025, 0.25),
                      xlabel="Frequency (Hz)",
                      ylabel="Normalised Amplitude")

    aplot.single_subplots(grid_size=(2, 1),
                          fig_data={(0, 0): ws_fig,
                                    (1, 0): fft_fig},
                          individual_figsize=(5, 2.5),
                          auto_timestamp=False,
                          folder="stft_schematic",
                          savefig_path=f"tau={tau}s.png"
                          )

# Plot the 3D vis of the FFTs which forms the STFT
x, y = np.meshgrid(fft_x, np.arange(0, n_segments) / sum(durations))
fft_stack_fig = FigData(xs=x,
                        ys=y,
                        zs=[np.abs(np.array(ws_ffts))**2],
                        title="STFT surface from stacking FFT",
                        plot_type="plot_surface",
                        xlabel="Frequency (Hz)",
                        ylabel="Time (s)",
                        zlabel="Normalised Amplitude",
                        line_options=[{"cmap": "viridis"}],
Example #9
0
r_stft_rec_fig = apreset.stft_pcolormesh(t=t,
                                         f=f,
                                         Zxx=right_stft_recon,
                                         title=f"Separated source at d={right_d} with width H={right_H}",
                                         yscale="linear",
                                         ylim=r_ylim)

#
# Output
#

# Plot the frequency-azimuth spectrogram at the specified time frame
aplot.single_subplots(grid_size=(2, 2),
                      fig_data={(0, 0): l_azi_null_fig,
                                (1, 0): l_azi_peak_fig,
                                (0, 1): l_stft_src_fig,
                                (1, 1): l_stft_rec_fig,
                                },
                      individual_figsize=(6, 4),
                      savefig_path=f"ADRess_left_{tech_name}.png")

aplot.single_subplots(grid_size=(2, 2),
                      fig_data={(0, 0): r_azi_null_fig,
                                (1, 0): r_azi_peak_fig,
                                (0, 1): r_stft_src_fig,
                                (1, 1): r_stft_rec_fig,
                                },
                      individual_figsize=(6, 4),
                      savefig_path=f"ADRess_right_{tech_name}.png")

# Output audio file
for i, chord in enumerate(chord_names):
Example #10
0
                            "label": window.__name__
                        }],
                        **signal_axis_labels)

cl_fft_fig = FigData(
    xs=cl_fft_x[:cl_slice_num],
    ys=[np.abs(cl_fft[:cl_slice_num]),
        np.abs(cl_window_fft[:cl_slice_num])],
    title=cl_fft_title,
    line_options=[{
        "label": cl_signal_title
    }, {
        "label": cl_window_title
    }],
    options=["grid"],
    plot_type="semilogy",
    **fft_axis_labels)

#
# Plot
#

aplot.single_subplots(grid_size=(2, 2),
                      fig_data={
                          (0, 0): cl_signal_fig,
                          (0, 1): cl_window_fig,
                          (1, 0, 1, 2): cl_fft_fig
                      },
                      individual_figsize=(6, 4),
                      savefig_path=f"Clarinet_FFT_Full_{window.__name__}")
Example #11
0
    f"STFT Magnitude (Zoomed) of {scale_name} Major scale\n(Artificial clarinet sound)",
    line_options=[{
        "vmin": 0,
        "vmax": Zxx_max,
        "shading": 'gouraud'
    }],
    options=["grid"],
    plot_type="pcolormesh",
    xlabel="Time (s)",
    ylabel="Frequency (Hz)",
    fit_data=False)

#
# Display results
#

aplot.single_plot(fig_data=signal_fig)

aplot.single_subplots(
    grid_size=(2, 2),
    fig_data={
        (0, 0): fft_fig,
        (1, 0): fft_zoomed_fig,
        (0, 1): stft_fig,
        (1, 1): stft_zoomed_fig
    },
    individual_figsize=(6, 4),
    savefig_path=f"STFT_Clarinet_{scale_name}_Major_scale_sampr={samp_rate}")

# wav.write(f"audio/cl_{scale_name}_scale", nst)
Example #12
0
                             window=window,
                             nperseg=nperseg,
                             noverlap=noverlap)
    true_pos_stft_fig = apreset.stft_pcolormesh(t=t,
                                                f=f,
                                                Zxx=stft,
                                                title=f"True signal at stereo position {pos}",
                                                yscale="linear",
                                                ylim=global_ylim,
                                                colorbar_params={})
    fig_data[(4, i)] = true_pos_stft_fig

# Plot L/R STFTs, null/peaks, recon STFTs & true STFTs at each stereo pos
aplot.single_subplots(grid_size=(5, 4),
                      fig_data=fig_data,
                      individual_figsize=(4.8, 3),
                      savefig_path=f"StereoADRess_{tech_name}.png",
                      show=False
                      )

aplot.single_subplots(grid_size=(4, 2),
                      fig_data={(0, 0): fig_data[(0, 0)],
                                (0, 1): fig_data[(0, 1)]},
                      individual_figsize=(4.8, 3),
                      savefig_path=f"ADRess_{tech_name}_LR.png",
                      show=False
                      )

aplot.single_subplots(grid_size=(4, 2),
                      fig_data={(0, 0): fig_data[(1, 0)],
                                (0, 1): fig_data[(2, 0)],
                                (1, 0): fig_data[(1, 1)],
Example #13
0
                             nperseg=nperseg,
                             noverlap=noverlap)
    true_pos_stft_fig = apreset.stft_pcolormesh(
        t=t,
        f=f,
        Zxx=stft,
        title=f"True signal at stereo position {pos}",
        yscale="linear",
        ylim=global_ylim,
        max_mag=vmax)
    fig_data[(4, i)] = true_pos_stft_fig

# Plot L/R STFTs, null/peaks, recon STFTs & true STFTs at each stereo pos
aplot.single_subplots(grid_size=(5, 4),
                      fig_data=fig_data,
                      individual_figsize=(6, 4),
                      savefig_path=f"FitzADRess_{tech_name}.png",
                      show=False)

#
# Output audio
#

wav.write(f"audio/{name}_stereo", src.T, samp_rate=samp_rate)
wav.write(f"audio/{name}_left", left_signal, samp_rate=samp_rate)
wav.write(f"audio/{name}_right", right_signal, samp_rate=samp_rate)

# True audio at each stereo position
for pos, audio in true_signals.items():
    wav.write(f"audio/{name}_pos={pos}", audio, samp_rate=samp_rate)
Example #14
0
        null_fig = FigData(xs=np.arange(beta + 1),
                           ys=f,
                           zs=nulls[i],
                           title=f"Frequency-azimuth spectrogram\n(tau={'{:.2f}'.format(tau)}s)",
                           line_options=azi_line_options,
                           ylim=(0, 4000),
                           **azi_fig_params)

        azi_line_options[0]["vmax"] = np.max(peaks[i]) * 0.25
        peak_fig = FigData(xs=np.arange(beta + 1),
                           ys=f,
                           zs=peaks[i],
                           title=f"Null magnitude estimation (tau={'{:.2f}'.format(tau)}s)",
                           line_options=azi_line_options,
                           ylim=(0, 4000),
                           **azi_fig_params)

        fig_data[(0, i)] = null_fig
        fig_data[(1, i)] = peak_fig

    # Plot null/peaks
    aplot.single_subplots(grid_size=(2, len(taus)),
                          fig_data=fig_data,
                          individual_figsize=(6, 4),
                          folder=f"URMP_Analysis/{idx}",
                          savefig_path=f"{taus}.png".replace(" ", ""),
                          auto_timestamp=False,
                          show=False
                          )