Example #1
0
class Loader(object):
    def __init__(self, args):
        self.args = args
        if self.args.dataset == 'cityscapes':
            self.nclass = 19

        self.model = AutoDeeplab(num_classes=self.nclass,
                                 num_layers=12,
                                 filter_multiplier=self.args.filter_multiplier,
                                 block_multiplier=args.block_multiplier,
                                 step=args.step)
        # Using cuda
        if args.cuda:
            if (torch.cuda.device_count() > 1 or args.load_parallel):
                self.model = torch.nn.DataParallel(self.model.cuda())
                patch_replication_callback(self.model)
            self.model = self.model.cuda()
            print('cuda finished')

        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'".format(
                    args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']

            # if the weights are wrapped in module object we have to clean it
            if args.clean_module:
                self.model.load_state_dict(checkpoint['state_dict'])
                state_dict = checkpoint['state_dict']
                new_state_dict = OrderedDict()
                for k, v in state_dict.items():
                    name = k[7:]  # remove 'module.' of dataparallel
                    new_state_dict[name] = v
                self.model.load_state_dict(new_state_dict)

            else:
                if (torch.cuda.device_count() > 1 or args.load_parallel):
                    self.model.module.load_state_dict(checkpoint['state_dict'])
                else:
                    self.model.load_state_dict(checkpoint['state_dict'])

        self.decoder = Decoder(self.model.alphas, self.model.bottom_betas,
                               self.model.betas8, self.model.betas16,
                               self.model.top_betas, args.block_multiplier,
                               args.step)

    def retreive_alphas_betas(self):
        return self.model.alphas, self.model.bottom_betas, self.model.betas8, self.model.betas16, self.model.top_betas

    def decode_architecture(self):
        paths, paths_space = self.decoder.viterbi_decode()
        return paths, paths_space

    def decode_cell(self):
        genotype = self.decoder.genotype_decode()
        return genotype
Example #2
0
    def __init__(self, args):
        self.args = args

        # Define Saver
        self.saver = Saver(args)
        self.saver.save_experiment_config()
        # Define Tensorboard Summary
        self.summary = TensorboardSummary(self.saver.experiment_dir)
        self.writer = self.summary.create_summary()
        self.use_amp = True if (APEX_AVAILABLE and args.use_amp) else False
        self.opt_level = args.opt_level

        kwargs = {
            'num_workers': args.workers,
            'pin_memory': True,
            'drop_last': True
        }
        self.train_loaderA, self.train_loaderB, self.val_loader, self.test_loader, self.nclass = make_data_loader(
            args, **kwargs)

        if args.use_balanced_weights:
            classes_weights_path = os.path.join(
                Path.db_root_dir(args.dataset),
                args.dataset + '_classes_weights.npy')
            if os.path.isfile(classes_weights_path):
                weight = np.load(classes_weights_path)
            else:
                raise NotImplementedError
                #if so, which trainloader to use?
                # weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass)
            weight = torch.from_numpy(weight.astype(np.float32))
        else:
            weight = None
        self.criterion = SegmentationLosses(
            weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)

        # Define network
        model = AutoDeeplab(self.nclass, 12, self.criterion,
                            self.args.filter_multiplier,
                            self.args.block_multiplier, self.args.step)
        optimizer = torch.optim.SGD(model.weight_parameters(),
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)

        self.model, self.optimizer = model, optimizer

        self.architect_optimizer = torch.optim.Adam(
            self.model.arch_parameters(),
            lr=args.arch_lr,
            betas=(0.9, 0.999),
            weight_decay=args.arch_weight_decay)

        # Define Evaluator
        self.evaluator = Evaluator(self.nclass)
        # Define lr scheduler
        self.scheduler = LR_Scheduler(args.lr_scheduler,
                                      args.lr,
                                      args.epochs,
                                      len(self.train_loaderA),
                                      min_lr=args.min_lr)
        # TODO: Figure out if len(self.train_loader) should be devided by two ? in other module as well
        # Using cuda
        if args.cuda:
            self.model = self.model.cuda()

        # mixed precision
        if self.use_amp and args.cuda:
            keep_batchnorm_fp32 = True if (self.opt_level == 'O2'
                                           or self.opt_level == 'O3') else None

            # fix for current pytorch version with opt_level 'O1'
            if self.opt_level == 'O1' and torch.__version__ < '1.3':
                for module in self.model.modules():
                    if isinstance(module,
                                  torch.nn.modules.batchnorm._BatchNorm):
                        # Hack to fix BN fprop without affine transformation
                        if module.weight is None:
                            module.weight = torch.nn.Parameter(
                                torch.ones(module.running_var.shape,
                                           dtype=module.running_var.dtype,
                                           device=module.running_var.device),
                                requires_grad=False)
                        if module.bias is None:
                            module.bias = torch.nn.Parameter(
                                torch.zeros(module.running_var.shape,
                                            dtype=module.running_var.dtype,
                                            device=module.running_var.device),
                                requires_grad=False)

            # print(keep_batchnorm_fp32)
            self.model, [self.optimizer,
                         self.architect_optimizer] = amp.initialize(
                             self.model,
                             [self.optimizer, self.architect_optimizer],
                             opt_level=self.opt_level,
                             keep_batchnorm_fp32=keep_batchnorm_fp32,
                             loss_scale="dynamic")

            print('cuda finished')

        # Using data parallel
        if args.cuda and len(self.args.gpu_ids) > 1:
            if self.opt_level == 'O2' or self.opt_level == 'O3':
                print(
                    'currently cannot run with nn.DataParallel and optimization level',
                    self.opt_level)
            self.model = torch.nn.DataParallel(self.model,
                                               device_ids=self.args.gpu_ids)
            patch_replication_callback(self.model)
            print('training on multiple-GPUs')

        #checkpoint = torch.load(args.resume)
        #print('about to load state_dict')
        #self.model.load_state_dict(checkpoint['state_dict'])
        #print('model loaded')
        #sys.exit()

        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'".format(
                    args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']

            # if the weights are wrapped in module object we have to clean it
            if args.clean_module:
                self.model.load_state_dict(checkpoint['state_dict'])
                state_dict = checkpoint['state_dict']
                new_state_dict = OrderedDict()
                for k, v in state_dict.items():
                    name = k[7:]  # remove 'module.' of dataparallel
                    new_state_dict[name] = v
                # self.model.load_state_dict(new_state_dict)
                copy_state_dict(self.model.state_dict(), new_state_dict)

            else:
                if torch.cuda.device_count() > 1 or args.load_parallel:
                    # self.model.module.load_state_dict(checkpoint['state_dict'])
                    copy_state_dict(self.model.module.state_dict(),
                                    checkpoint['state_dict'])
                else:
                    # self.model.load_state_dict(checkpoint['state_dict'])
                    copy_state_dict(self.model.state_dict(),
                                    checkpoint['state_dict'])

            if not args.ft:
                # self.optimizer.load_state_dict(checkpoint['optimizer'])
                copy_state_dict(self.optimizer.state_dict(),
                                checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))

        # Clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
Example #3
0
    def __init__(self, args):
        self.args = args

        # Define Saver
        self.saver = Saver(args)
        self.saver.save_experiment_config()
        # Define Tensorboard Summary
        self.summary = TensorboardSummary(self.saver.experiment_dir)
        self.writer = self.summary.create_summary()

        # Define Dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True}
        #self.train_loader1, self.train_loader2, self.val_loader, self.test_loader, self.nclass = make_data_loader(args, **kwargs)
        self.train_loader1, self.train_loader2, self.val_loader,  self.nclass = make_data_loader(args, **kwargs)
        
        # Define Criterion
        # whether to use class balanced weights
        if args.use_balanced_weights:
            classes_weights_path = os.path.join(Path.db_root_dir(args.dataset), args.dataset+'_classes_weights.npy')
            if os.path.isfile(classes_weights_path):
                weight = np.load(classes_weights_path)
            else:
                weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass)
            weight = torch.from_numpy(weight.astype(np.float32))
        else:
            weight = None
        self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)

        # Define network
        model = AutoDeeplab (self.nclass, 12, self.criterion, crop_size=self.args.crop_size)
        optimizer = torch.optim.SGD(
                model.parameters(),
                args.lr,
                momentum=args.momentum,
                weight_decay=args.weight_decay
            )
        self.model, self.optimizer = model, optimizer

        # Using cuda
        if args.cuda:
            self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
            patch_replication_callback(self.model)
            self.model = self.model.cuda()
            print ('cuda finished')


        # Define Optimizer


        self.model, self.optimizer = model, optimizer

        # Define Evaluator
        self.evaluator = Evaluator(self.nclass)
        # Define lr scheduler
        self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr,
                                            args.epochs, len(self.train_loader1))

        self.architect = Architect (self.model, args)
        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))

        # Clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
Example #4
0
    #                   pretrained=True, output_stride=8)
    input = torch.rand(2, 3, 128, 128).cuda()
    # output, low_level_feat = model(input)
    # print(output.size())
    # print(low_level_feat.size())
    args = obtain_default_train_args()
    # model = DeepLab(num_classes=19,
    #                 backbone='autodeeplab',
    #                 output_stride=8,
    #                 sync_bn=False,
    #                 freeze_bn=False, args=args, separate=False)
    args = obtain_default_search_args()
    criterion = torch.nn.CrossEntropyLoss(ignore_index=255)
    model = AutoDeeplab(num_classes=19,
                        num_layers=12,
                        criterion=criterion,
                        filter_multiplier=args.filter_multiplier,
                        block_multiplier=args.block_multiplier,
                        step=args.step).cuda()

    output = model(input)
    print(output)
    # model.backbone(input)
    # total_params(model)
    # print(model.backbone.cells[1])
    # params, flops = profile(model, inputs=(input,))
    # print(params)
    # print(flops)

    # summary(model.backbone.cuda(), input_size=(3, 513, 513))
Example #5
0
import warnings
from torch.utils.data.dataloader import DataLoader
from dataloaders.datasets.cityscapes import CityscapesSegmentation
from config_utils.search_args import obtain_search_args
from utils.loss import SegmentationLosses
import torch
import numpy as np
from auto_deeplab import AutoDeeplab

model = AutoDeeplab(19, 12).cuda()

args = obtain_search_args()

args.cuda = True
criterion = SegmentationLosses(weight=None,
                               cuda=args.cuda).build_loss(mode=args.loss_type)


def save_grad(name):
    def hook(grad):
        grads[name] = grad

    return hook


args.crop_size = 64

dataset = CityscapesSegmentation(args, r'E:\BaiduNetdiskDownload\cityscapes',
                                 'train')

loader = DataLoader(dataset, batch_size=2, shuffle=True)
Example #6
0
    def __init__(self, args):
        self.args = args

        # Define Saver
        self.saver = Saver(args)
        self.saver.save_experiment_config()
        # Define Tensorboard Summary
        self.summary = TensorboardSummary(self.saver.experiment_dir)
        self.writer = self.summary.create_summary()

        kwargs = {'num_workers': args.workers, 'pin_memory': True}
        self.train_loaderA, self.train_loaderB, self.val_loader, self.test_loader, self.nclass = make_data_loader(args, **kwargs)

        if args.use_balanced_weights:
            classes_weights_path = os.path.join(Path.db_root_dir(args.dataset), args.dataset+'_classes_weights.npy')
            if os.path.isfile(classes_weights_path):
                weight = np.load(classes_weights_path)
            else:
                #if so, which trainloader to use?
                weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass)
            weight = torch.from_numpy(weight.astype(np.float32))
        else:
            weight = None
        self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)

        # Define network
        model = AutoDeeplab (num_classes=self.nclass, num_layers=12, criterion=self.criterion, filter_multiplier=self.args.filter_multiplier,
                             block_multiplier=self.args.block_multiplier, step=self.args.step)
        optimizer = torch.optim.SGD(
                model.weight_parameters(),
                args.lr,
                momentum=args.momentum,
                weight_decay=args.weight_decay
            )

        self.model, self.optimizer = model, optimizer
        # Define Evaluator
        self.evaluator = Evaluator(self.nclass)
        # Define lr scheduler
        self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr,
                                      args.epochs, len(self.train_loaderA), min_lr=args.min_lr)

        self.architect = Architect (self.model, args)


        # Using cuda
        if args.cuda:
            if (torch.cuda.device_count() > 1 or args.load_parallel):
                self.model = torch.nn.DataParallel(self.model.cuda())
                patch_replication_callback(self.model)
            self.model = self.model.cuda()
            print ('cuda finished')

        #checkpoint = torch.load(args.resume)
        #print('about to load state_dict')
        #self.model.load_state_dict(checkpoint['state_dict'])
        #print('model loaded')
        #sys.exit()

        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']

            # if the weights are wrapped in module object we have to clean it
            if args.clean_module:
                self.model.load_state_dict(checkpoint['state_dict'])
                state_dict = checkpoint['state_dict']
                new_state_dict = OrderedDict()
                for k, v in state_dict.items():
                    name = k[7:]  # remove 'module.' of dataparallel
                    new_state_dict[name] = v
                self.model.load_state_dict(new_state_dict)

            else:
                if (torch.cuda.device_count() > 1 or args.load_parallel):
                    self.model.module.load_state_dict(checkpoint['state_dict'])
                else:
                    self.model.load_state_dict(checkpoint['state_dict'])


            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))

        # Clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
Example #7
0
import warnings
from torch.utils.data.dataloader import DataLoader
from dataloaders.datasets.cityscapes import CityscapesSegmentation
from config_utils.search_args import obtain_search_args
from utils.loss import SegmentationLosses
import torch
import numpy as np
from auto_deeplab import AutoDeeplab
from utils.metrics import Evaluator

model = AutoDeeplab(19, 12).cuda()

args = obtain_search_args()

args.cuda = True
criterion = SegmentationLosses(weight=None,
                               cuda=args.cuda).build_loss(mode=args.loss_type)


def save_grad(name):
    def hook(grad):
        grads[name] = grad

    return hook


args.crop_size = 64

dataset = CityscapesSegmentation(
    args, '/home/michela/Scrivania/ML/dataset/cityscapes', 'train')
Example #8
0
                        type=int,
                        default=32,
                        help='F in paper')
    parser.add_argument('--steps', type=int, default=5, help='B in paper')
    parser.add_argument('--down_sample_level',
                        type=int,
                        default=8,
                        help='s in paper')
    return parser.parse_args()


if __name__ == "__main__":
    import torch
    import time
    args = obtain_default_search_args()
    criterion = torch.nn.CrossEntropyLoss(ignore_index=255)
    model = AutoDeeplab(num_classes=19,
                        num_layers=12,
                        criterion=criterion,
                        filter_multiplier=args.filter_multiplier,
                        block_multiplier=args.block_multiplier,
                        step=args.step)
    model = nn.DataParallel(model).cuda()
    # torch.save(model.state_dict(), './checkpoint.pts.tar')
    checkpoint = torch.load('./checkpoint.pts.tar')
    st = time.time()
    # copy_state_dict(model.state_dict(), checkpoint)
    model.load_state_dict(checkpoint)
    et = time.time()
    print(et - st)
Example #9
0
    def __init__(self, args):
        self.args = args

        # Define Saver
        self.saver = Saver(args)
        self.saver.save_experiment_config()

        kwargs = {'num_workers': args.workers, 'pin_memory': True}
        self.train_loader, self.val_loader, self.test_loader, self.nclass = make_data_loader(
            args, **kwargs)

        weight = None
        self.criterion = SegmentationLosses(
            weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)

        # Define network
        model = AutoDeeplab(num_classes=self.nclass,
                            num_layers=12,
                            criterion=self.criterion,
                            filter_multiplier=self.args.filter_multiplier)
        optimizer = torch.optim.SGD(model.weight_parameters(),
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)

        self.model, self.optimizer = model, optimizer
        # Define Evaluator
        self.evaluator = Evaluator(self.nclass)
        # Define lr scheduler
        self.scheduler = LR_Scheduler(args.lr_scheduler,
                                      args.lr,
                                      args.epochs,
                                      len(self.train_loader),
                                      min_lr=args.min_lr)
        # TODO: Figure out if len(self.train_loader) should be devided by two ? in other module as well
        # Using cuda
        if args.cuda:
            if (torch.cuda.device_count() > 1 or args.load_parallel):
                self.model = torch.nn.DataParallel(self.model.cuda())
                patch_replication_callback(self.model)
            self.model = self.model.cuda()
            print('cuda finished')

        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'".format(
                    args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']

            # if the weights are wrapped in module object we have to clean it
            if args.clean_module:
                self.model.load_state_dict(checkpoint['state_dict'])
                state_dict = checkpoint['state_dict']
                new_state_dict = OrderedDict()
                for k, v in state_dict.items():
                    name = k[7:]  # remove 'module.' of dataparallel
                    new_state_dict[name] = v
                self.model.load_state_dict(new_state_dict)

            else:
                if (torch.cuda.device_count() > 1 or args.load_parallel):
                    self.model.module.load_state_dict(checkpoint['state_dict'])
                else:
                    self.model.load_state_dict(checkpoint['state_dict'])

            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))

        # Clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0