def test_1(): """ Tests that the match factor for a known learning set and test case is close to the known value """ script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') store_data, records = get_data(file1) conf_results, results = find_associations(store_data, records, support=0.0003, confidence=0.01, lift=0.1) thresh_results = get_top_results(conf_results, 0.7) test_file = os.path.join(script_dir, '../assets/jigsawQuery.csv') test_data, test_records = get_data(test_file) learned_dict, matched, overmatched, unmatched, match_factor = match( thresh_results, test_records) assert np.allclose(0.82051, match_factor)
def test_1(): """ For this particular .csv file, check to make sure the first component is ic motor """ script_dir = os.path.dirname(__file__) file = os.path.join(script_dir, '../assets/bladeQueryClean.csv') assert get_data(file)[0][0][0] == 'ic motor'
def test_3(): """ For this particular .csv file, check to make sure the last component is positioner """ script_dir = os.path.dirname(__file__) file = os.path.join(script_dir, '../assets/bladeQueryClean.csv') assert get_data(file)[0][0][89] == 'positioner'
def test_2(): """ For this particular .csv file, check to make sure the first function-flow is convert chemical """ script_dir = os.path.dirname(__file__) file = os.path.join(script_dir, '../assets/bladeQueryClean.csv') assert get_data(file)[0][1][0] == 'convert chemical'
def test_2(): """ Testing that the results for the component screw have all three factors: support, confidence, lift """ script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') store_data, records = get_data(file1) conf_results, results = find_associations(store_data, records, support=0.0003, confidence=0.01, lift=0.1) assert len(results['screw']) == 3
def test_1(): """ Tests that the top function-flow combination for the component "screw" is "couple solid" """ script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') store_data, records = get_data(file1) conf_results, results = find_associations(store_data, records) thresh_results = get_top_results(conf_results, 0.7) assert thresh_results['screw'][0][0] == 'couple solid'
def test_2(): """ Tests that the top 70% of function-flow combinations for the component "screw" only has one result """ script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') store_data, records = get_data(file1) conf_results, results = find_associations(store_data, records) thresh_results = get_top_results(conf_results, 0.7) assert len(thresh_results['screw']) == 1
def test_1(): """ Testing that the highest confidence result for the screw component is couple solid, which is what a screw does almost exclusively """ script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') store_data, records = get_data(file1) conf_results, results = find_associations(store_data,records) assert conf_results['screw'][0][0] == 'couple solid'
from autofunc.get_match_factor import match from autofunc.simple_counter import count_stuff from autofunc.get_top_results import get_top_results from autofunc.get_data import get_data import os.path """ Example showing how to find the match factor using the simple counting file """ # Dataset used for data mining script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') comb_sort = count_stuff(file1) # Use a threshold to get the top XX% of confidence values threshold = 0.69 thresh_results = get_top_results(comb_sort, threshold) # Use a known product for verification test_file = os.path.join(script_dir, '../assets/jigsawQuery.csv') test_data, test_records = get_data(test_file) # Find the match factor of the verification test by comparing the learned results with the known function/flows learned_dict, matched, overmatched, unmatched, match_factor = match( thresh_results, test_records) print('Match factor = {0:.5f}'.format(match_factor))
from autofunc.get_match_factor import match from autofunc.get_top_results import get_top_results from autofunc.find_associations import find_associations from autofunc.get_data import get_data import os.path """ Example showing how to find the match factor using association rules """ # Dataset used for data mining script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') # Convert file to data frame and list store_data, records = get_data(file1) # Use Association Rules to sort the functions/flows of components by confidence conf_results, results = find_associations(store_data, records) # Use a threshold to get the top XX% of confidence values thresh_results = get_top_results(conf_results, 0.7) # Use a known product for verification test_file = os.path.join(script_dir, '../assets/jigsawQuery.csv') test_data, test_records = get_data(test_file) # Find the match factor of the verification test by comparing the learned results with the known function/flows learned_dict, matched, overmatched, unmatched, match_factor = match( thresh_results, test_records) print('Match factor = {0:.5f}'.format(match_factor))