Example #1
0
def test_text_special_feature_generator(generator_helper, data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_full()

    generator = TextSpecialFeatureGenerator(min_occur_ratio=0,
                                            min_occur_offset=0)

    expected_feature_metadata_in_full = {
        ('object', ('text', )): ['text'],
    }
    expected_feature_metadata_full = {
        ('int', ('binned', 'text_special')): [
            'text.char_count', 'text.word_count', 'text.capital_ratio',
            'text.lower_ratio', 'text.special_ratio', 'text.symbol_ratio. '
        ]
    }

    expected_output_data_feat_lower_ratio = [3, 2, 0, 3, 3, 3, 3, 3, 1]

    # When
    output_data = generator_helper.fit_transform_assert(
        input_data=input_data,
        generator=generator,
        expected_feature_metadata_in_full=expected_feature_metadata_in_full,
        expected_feature_metadata_full=expected_feature_metadata_full,
    )

    assert expected_output_data_feat_lower_ratio == list(
        output_data['text.lower_ratio'].values)
def test_text_special_feature_generator_categorical_nan(
        generator_helper, data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_full()
    input_data.loc[2, 'text'] = None
    input_data['text'] = input_data['text'].astype('category')

    type_map_raw = {
        'int': 'int',
        'float': 'float',
        'obj': 'object',
        'cat': 'category',
        'datetime': 'datetime',
        'text': 'category',
        'datetime_as_object': 'object',
    }
    type_map_special = {
        'text': ['text'],
    }
    feature_metadata = FeatureMetadata(
        type_map_raw,
        type_map_special=type_map_special,
    )

    generator = TextSpecialFeatureGenerator(min_occur_ratio=0,
                                            min_occur_offset=0)

    expected_feature_metadata_in_full = {
        ('category', ('text', )): ['text'],
    }

    expected_output_data_feat_lower_ratio = [2, 1, 2, 2, 2, 2, 2, 2, 0]

    # When
    output_data = generator_helper.fit_transform_assert(
        input_data=input_data,
        generator=generator,
        feature_metadata_in=feature_metadata,
        expected_feature_metadata_in_full=expected_feature_metadata_in_full,
        expected_feature_metadata_full=expected_feature_metadata_full,
    )

    assert expected_output_data_feat_lower_ratio == list(
        output_data['text.lower_ratio'].values)
Example #3
0
def test_pipeline_feature_generator(generator_helper, data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_full()

    toy_vectorizer = CountVectorizer(min_df=2,
                                     ngram_range=(1, 3),
                                     max_features=10,
                                     dtype=np.uint8)

    text_ngram_feature_generator = TextNgramFeatureGenerator(
        vectorizer=toy_vectorizer)
    text_ngram_feature_generator.max_memory_ratio = None  # Necessary in test to avoid CI non-deterministically pruning ngram counts.

    generator = PipelineFeatureGenerator(generators=[[
        IdentityFeatureGenerator(infer_features_in_args=dict(
            valid_raw_types=[R_INT, R_FLOAT])),
        CategoryFeatureGenerator(),
        DatetimeFeatureGenerator(),
        TextSpecialFeatureGenerator(),
        text_ngram_feature_generator,
    ]])

    expected_feature_metadata_in_full = {
        ('category', ()): ['cat'],
        ('datetime', ()): ['datetime'],
        ('float', ()): ['float'],
        ('int', ()): ['int'],
        ('object', ()): ['obj'],
        ('object', ('datetime_as_object', )): ['datetime_as_object'],
        ('object', ('text', )): ['text']
    }

    expected_feature_metadata_full = {
        ('category', ()): ['obj', 'cat'],
        ('float', ()): ['float'],
        ('int', ()): ['int'],
        ('int', ('binned', 'text_special')): [
            'text.char_count', 'text.word_count', 'text.lower_ratio',
            'text.special_ratio', 'text.symbol_ratio. '
        ],
        ('int', ('datetime_as_int', )): ['datetime', 'datetime_as_object'],
        ('int', ('text_ngram', )): [
            '__nlp__.breaks', '__nlp__.end', '__nlp__.end of',
            '__nlp__.end of the', '__nlp__.of', '__nlp__.sentence',
            '__nlp__.sentence breaks', '__nlp__.the', '__nlp__.the end',
            '__nlp__.world', '__nlp__._total_'
        ]
    }

    expected_output_data_feat_datetime = [
        1533140820000000000, 1301322000000000000, 1301322000000000000,
        1524238620000000000, 1524238620000000000, -5364662400000000000,
        7289654340000000000, 1301322000000000000, 1301322000000000000
    ]

    expected_output_data_feat_lower_ratio = [3, 2, 0, 3, 3, 3, 3, 3, 1]
    expected_output_data_feat_total = [1, 3, 0, 0, 7, 1, 3, 7, 3]

    # When
    output_data = generator_helper.fit_transform_assert(
        input_data=input_data,
        generator=generator,
        expected_feature_metadata_in_full=expected_feature_metadata_in_full,
        expected_feature_metadata_full=expected_feature_metadata_full,
    )

    # int and float checks
    assert output_data['int'].equals(input_data['int'])
    assert output_data['float'].equals(input_data['float'])

    # object and category checks
    assert list(
        output_data['obj'].values) == [1, np.nan, 1, 2, 2, 2, np.nan, 0, 0]
    assert list(output_data['cat'].values) == [
        0, np.nan, 0, 1, 1, 1, np.nan, np.nan, np.nan
    ]

    # datetime checks
    assert list(output_data['datetime'].values) == list(
        output_data['datetime_as_object'].values)
    assert expected_output_data_feat_datetime == list(
        output_data['datetime'].values)

    # text_special checks
    assert expected_output_data_feat_lower_ratio == list(
        output_data['text.lower_ratio'].values)

    # text_ngram checks
    assert expected_output_data_feat_total == list(
        output_data['__nlp__._total_'].values)
Example #4
0
def test_pipeline_feature_generator_removal_advanced(generator_helper,
                                                     data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_full()

    toy_vectorizer = CountVectorizer(min_df=2,
                                     ngram_range=(1, 3),
                                     max_features=10,
                                     dtype=np.uint8)

    text_ngram_feature_generator = TextNgramFeatureGenerator(
        vectorizer=toy_vectorizer)
    text_ngram_feature_generator.max_memory_ratio = None  # Necessary in test to avoid CI non-deterministically pruning ngram counts.

    generator = PipelineFeatureGenerator(generators=[
        [
            IdentityFeatureGenerator(infer_features_in_args=dict(
                valid_raw_types=[R_INT, R_FLOAT])),
            CategoryFeatureGenerator(),
            DatetimeFeatureGenerator(),
            TextSpecialFeatureGenerator(),
            text_ngram_feature_generator,
        ],
        [
            IdentityFeatureGenerator(infer_features_in_args=dict(
                valid_raw_types=[R_CATEGORY]))
        ],
    ])

    expected_feature_metadata_in_full = {
        ('category', ()): ['cat'],
        ('object', ()): ['obj']
    }

    expected_feature_metadata_full = {('category', ()): ['obj', 'cat']}

    expected_feature_metadata_in_unused_full = {
        'datetime': ('datetime', ()),
        'datetime_as_object': ('object', ('datetime_as_object', )),
        'float': ('float', ()),
        'int': ('int', ()),
        'text': ('object', ('text', ))
    }

    # When
    output_data = generator_helper.fit_transform_assert(
        input_data=input_data,
        generator=generator,
        expected_feature_metadata_in_full=expected_feature_metadata_in_full,
        expected_feature_metadata_full=expected_feature_metadata_full,
    )

    feature_metadata_in_unused_full = generator._feature_metadata_in_unused.to_dict(
    )

    # object and category checks
    assert list(
        output_data['obj'].values) == [1, np.nan, 1, 2, 2, 2, np.nan, 0, 0]
    assert list(output_data['cat'].values) == [
        0, np.nan, 0, 1, 1, 1, np.nan, np.nan, np.nan
    ]

    assert feature_metadata_in_unused_full == expected_feature_metadata_in_unused_full