Example #1
0
def test_pipeline_feature_generator(generator_helper, data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_full()

    toy_vectorizer = CountVectorizer(min_df=2,
                                     ngram_range=(1, 3),
                                     max_features=10,
                                     dtype=np.uint8)

    text_ngram_feature_generator = TextNgramFeatureGenerator(
        vectorizer=toy_vectorizer)
    text_ngram_feature_generator.max_memory_ratio = None  # Necessary in test to avoid CI non-deterministically pruning ngram counts.

    generator = PipelineFeatureGenerator(generators=[[
        IdentityFeatureGenerator(infer_features_in_args=dict(
            valid_raw_types=[R_INT, R_FLOAT])),
        CategoryFeatureGenerator(),
        DatetimeFeatureGenerator(),
        TextSpecialFeatureGenerator(),
        text_ngram_feature_generator,
    ]])

    expected_feature_metadata_in_full = {
        ('category', ()): ['cat'],
        ('datetime', ()): ['datetime'],
        ('float', ()): ['float'],
        ('int', ()): ['int'],
        ('object', ()): ['obj'],
        ('object', ('datetime_as_object', )): ['datetime_as_object'],
        ('object', ('text', )): ['text']
    }

    expected_feature_metadata_full = {
        ('category', ()): ['obj', 'cat'],
        ('float', ()): ['float'],
        ('int', ()): ['int'],
        ('int', ('binned', 'text_special')): [
            'text.char_count', 'text.word_count', 'text.lower_ratio',
            'text.special_ratio', 'text.symbol_ratio. '
        ],
        ('int', ('datetime_as_int', )): ['datetime', 'datetime_as_object'],
        ('int', ('text_ngram', )): [
            '__nlp__.breaks', '__nlp__.end', '__nlp__.end of',
            '__nlp__.end of the', '__nlp__.of', '__nlp__.sentence',
            '__nlp__.sentence breaks', '__nlp__.the', '__nlp__.the end',
            '__nlp__.world', '__nlp__._total_'
        ]
    }

    expected_output_data_feat_datetime = [
        1533140820000000000, -9223372036854775808, -9223372036854775808,
        1524238620000000000, 1524238620000000000, -5364662400000000000,
        7289654340000000000, 1597475520000000000, 1608257520000000000
    ]

    expected_output_data_feat_lower_ratio = [3, 2, 0, 3, 3, 3, 3, 3, 1]
    expected_output_data_feat_total = [1, 3, 0, 0, 7, 1, 3, 7, 3]

    # When
    output_data = generator_helper.fit_transform_assert(
        input_data=input_data,
        generator=generator,
        expected_feature_metadata_in_full=expected_feature_metadata_in_full,
        expected_feature_metadata_full=expected_feature_metadata_full,
    )

    # int and float checks
    assert output_data['int'].equals(input_data['int'])
    assert output_data['float'].equals(input_data['float'])

    # object and category checks
    assert list(output_data['obj'].values) == [1, 2, 1, 4, 4, 4, 3, 0, 0]
    assert list(
        output_data['cat'].values) == [0, 1, 0, 3, 3, 3, 2, np.nan, np.nan]

    # datetime checks
    assert list(output_data['datetime'].values) == list(
        output_data['datetime_as_object'].values)
    assert expected_output_data_feat_datetime == list(
        output_data['datetime'].values)

    # text_special checks
    assert expected_output_data_feat_lower_ratio == list(
        output_data['text.lower_ratio'].values)

    # text_ngram checks
    assert expected_output_data_feat_total == list(
        output_data['__nlp__._total_'].values)
Example #2
0
def test_category_feature_generator(generator_helper, data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_standard()
    category_input_data = input_data[['obj', 'cat']].astype('category')

    generator_1 = CategoryFeatureGenerator()
    generator_2 = CategoryFeatureGenerator(maximum_num_cat=2)
    generator_3 = CategoryFeatureGenerator(minimum_cat_count=3)
    generator_4 = CategoryFeatureGenerator(cat_order='count')
    generator_5 = CategoryFeatureGenerator(minimize_memory=False)

    expected_feature_metadata_in_full = {
        ('object', ()): ['obj'],
        ('category', ()): ['cat'],
    }
    expected_feature_metadata_full = {('category', ()): ['obj', 'cat']}

    expected_cat_categories_lst = [
        [0, 1, 2, 3],
        [0, 1],
        [0],
        [0, 1, 2, 3],
    ]

    expected_cat_values_lst = [
        [0, 1, 0, 3, 3, 3, 2, np.nan, np.nan],
        [0, np.nan, 0, 1, 1, 1, np.nan, np.nan, np.nan],
        [np.nan, np.nan, np.nan, 0, 0, 0, np.nan, np.nan, np.nan],
        [2, 1, 2, 3, 3, 3, 0, np.nan, np.nan],
    ]

    expected_cat_codes_lst = [
        [0, 1, 0, 3, 3, 3, 2, -1, -1],
        [0, -1, 0, 1, 1, 1, -1, -1, -1],
        [-1, -1, -1, 0, 0, 0, -1, -1, -1],
        [2, 1, 2, 3, 3, 3, 0, -1, -1],
    ]

    # When
    output_datas = []
    for generator in [
            generator_1, generator_2, generator_3, generator_4, generator_5
    ]:
        output_data = generator_helper.fit_transform_assert(
            input_data=input_data,
            generator=generator,
            expected_feature_metadata_in_full=expected_feature_metadata_in_full,
            expected_feature_metadata_full=expected_feature_metadata_full,
        )
        output_datas.append(output_data)

    # Therefore
    assert category_input_data.equals(output_datas[4])
    output_datas = output_datas[:4]

    for i in range(len(output_datas)):
        output_data = output_datas[i]
        for col in ['obj', 'cat']:
            assert output_data[col].dtype.name == 'category'
            assert list(output_data[col].cat.categories
                        ) == expected_cat_categories_lst[i]
            assert list(output_data[col]) == expected_cat_values_lst[i]
            assert list(
                output_data[col].cat.codes) == expected_cat_codes_lst[i]
Example #3
0
def test_pipeline_feature_generator_removal_advanced(generator_helper,
                                                     data_helper):
    # Given
    input_data = data_helper.generate_multi_feature_full()

    toy_vectorizer = CountVectorizer(min_df=2,
                                     ngram_range=(1, 3),
                                     max_features=10,
                                     dtype=np.uint8)

    text_ngram_feature_generator = TextNgramFeatureGenerator(
        vectorizer=toy_vectorizer)
    text_ngram_feature_generator.max_memory_ratio = None  # Necessary in test to avoid CI non-deterministically pruning ngram counts.

    generator = PipelineFeatureGenerator(generators=[
        [
            IdentityFeatureGenerator(infer_features_in_args=dict(
                valid_raw_types=[R_INT, R_FLOAT])),
            CategoryFeatureGenerator(),
            DatetimeFeatureGenerator(),
            TextSpecialFeatureGenerator(),
            text_ngram_feature_generator,
        ],
        [
            IdentityFeatureGenerator(infer_features_in_args=dict(
                valid_raw_types=[R_CATEGORY]))
        ],
    ])

    expected_feature_metadata_in_full = {
        ('category', ()): ['cat'],
        ('object', ()): ['obj']
    }

    expected_feature_metadata_full = {('category', ()): ['obj', 'cat']}

    expected_feature_metadata_in_unused_full = {
        'datetime': ('datetime', ()),
        'datetime_as_object': ('object', ('datetime_as_object', )),
        'float': ('float', ()),
        'int': ('int', ()),
        'text': ('object', ('text', ))
    }

    # When
    output_data = generator_helper.fit_transform_assert(
        input_data=input_data,
        generator=generator,
        expected_feature_metadata_in_full=expected_feature_metadata_in_full,
        expected_feature_metadata_full=expected_feature_metadata_full,
    )

    feature_metadata_in_unused_full = generator._feature_metadata_in_unused.to_dict(
    )

    # object and category checks
    assert list(output_data['obj'].values) == [1, 2, 1, 4, 4, 4, 3, 0, 0]
    assert list(
        output_data['cat'].values) == [0, 1, 0, 3, 3, 3, 2, np.nan, np.nan]

    assert feature_metadata_in_unused_full == expected_feature_metadata_in_unused_full
Example #4
0
# identity_feature_generator.fit(X=X)  # This is identical to fit_transform, just without returning X_identity_out

# Because IdentityFeatureGenerator simply passes the data along, nothing changed.
assert X_transform.equals(X)

identity_feature_generator = IdentityFeatureGenerator(features_in=['age', 'workclass'])  # Limit the valid input to only 'age' and 'workclass' features.
X_transform = identity_feature_generator.fit_transform(X=X, verbosity=3)
print(X_transform.head(5))  # Now the output only contains the two features we declared in the input arguments to the generator, acting as a feature filter.

from autogluon.tabular.features import R_INT
identity_feature_generator = IdentityFeatureGenerator(infer_features_in_args={'valid_raw_types': [R_INT]}, verbosity=3)  # Limit the valid input to only integer features.
X_transform = identity_feature_generator.fit_transform(X=X)
print(X_transform.head(5))  # Now the output only contains the int type features, acting as a type filter.

# Our data contains object features at present, but this is not valid input to models, so lets convert them to category types.
category_feature_generator = CategoryFeatureGenerator(verbosity=3)
X_transform = category_feature_generator.fit_transform(X=X)
print(X_transform.head(5))  # Note that the int features were automatically filtered out of this output. This is due to the defaults of CategoryFeatureGenerator which does not handle features other than objects and categories.

#####################################
# Create a custom feature generator #
#####################################

from pandas import DataFrame
from autogluon.tabular.features import AbstractFeatureGenerator


# Feature generator to add k to all values of integer features.
class PlusKFeatureGenerator(AbstractFeatureGenerator):
    def __init__(self, k, **kwargs):
        super().__init__(**kwargs)