Example #1
0
    def __init__(
            self,
            merge_mode: CategoricalValue("sum", "mul", "concat", "ave"),
            units: DiscreteValue(32, 1024),
            activation_fn: CategoricalValue("tanh", "sigmoid", "relu",
                                            "linear"),
            recurrent_activation_fn: CategoricalValue("tanh", "sigmoid",
                                                      "relu", "linear"),
            dropout: ContinuousValue(0, 0.5),
            recurrent_dropout: ContinuousValue(0, 0.5),
    ):
        super().__init__(
            layer=_LSTM(
                units=units,
                activation=activation_fn,
                recurrent_activation=recurrent_activation_fn,
                dropout=dropout,
                recurrent_dropout=recurrent_dropout,
                return_sequences=True,
            ),
            merge_mode=merge_mode,
        )

        self.activation_fn = activation_fn
        self.recurrent_activation_fn = recurrent_activation_fn
Example #2
0
 def __init__(
         self,
         featurewise_center: BooleanValue(),
         samplewise_center: BooleanValue(),
         featurewise_std_normalization: BooleanValue(),
         samplewise_std_normalization: BooleanValue(),
         rotation_range: DiscreteValue(0, 15),
         width_shift_range: ContinuousValue(0, 0.25),
         height_shift_range: ContinuousValue(0, 0.25),
         shear_range: ContinuousValue(0, 15),
         zoom_range: ContinuousValue(0, 0.25),
         horizontal_flip: BooleanValue(),
         vertical_flip: BooleanValue(),
 ):
     super().__init__(
         featurewise_center=featurewise_center,
         samplewise_center=samplewise_center,
         featurewise_std_normalization=featurewise_std_normalization,
         samplewise_std_normalization=samplewise_std_normalization,
         rotation_range=rotation_range,
         width_shift_range=width_shift_range,
         height_shift_range=height_shift_range,
         shear_range=shear_range,
         zoom_range=zoom_range,
         horizontal_flip=horizontal_flip,
         vertical_flip=vertical_flip,
     )
Example #3
0
 def __init__(self, filters: DiscreteValue(2, 8),
              kernel_size: CategoricalValue(3, 5, 7),
              l1: ContinuousValue(0, 1e-3), l2: ContinuousValue(0, 1e-3),
              **kwargs):
     self.l1 = l1
     self.l2 = l2
     super().__init__(filters=2**filters,
                      kernel_size=(kernel_size, kernel_size),
                      kernel_regularizer=regularizers.l1_l2(l1=l1, l2=l2),
                      padding="same",
                      data_format="channels_last",
                      **kwargs)
Example #4
0
    def __init__(
            self,
            dm: DiscreteValue(min=0, max=2),
            dbow_words: DiscreteValue(min=-100, max=100),
            dm_concat: DiscreteValue(min=-100, max=100),
            dm_tag_count: DiscreteValue(min=0, max=2),
            alpha: ContinuousValue(min=0.001, max=0.075),
            epochs: DiscreteValue(min=2, max=10),
            window: DiscreteValue(min=2, max=10),
            inner_tokenizer: algorithm(Sentence, Seq[Word]),
            inner_stemmer: algorithm(Word, Stem),
            inner_stopwords: algorithm(Seq[Word], Seq[Word]),
            lowercase: BooleanValue(),
            stopwords_remove: BooleanValue(),
    ):

        self.inner_tokenizer = inner_tokenizer
        self.inner_stemmer = inner_stemmer
        self.inner_stopwords = inner_stopwords
        self.lowercase = lowercase
        self.stopwords_remove = stopwords_remove

        super().__init__(
            dm=dm,
            dbow_words=dbow_words,
            dm_concat=dm_concat,
            dm_tag_count=dm_tag_count,
            alpha=alpha,
            epochs=epochs,
            window=window,
        )
Example #5
0
    def __init__(self, units: DiscreteValue(32, 1024),
                 activation_fn: CategoricalValue("tanh", "sigmoid", "relu",
                                                 "linear"),
                 recurrent_activation_fn: CategoricalValue(
                     "tanh", "sigmoid", "relu",
                     "linear"), dropout: ContinuousValue(0, 0.5),
                 recurrent_dropout: ContinuousValue(0, 0.5), **kwargs):
        super().__init__(units=units,
                         activation=activation_fn,
                         recurrent_activation=recurrent_activation_fn,
                         dropout=dropout,
                         recurrent_dropout=recurrent_dropout,
                         return_sequences=False,
                         **kwargs)

        self.activation_fn = activation_fn
        self.recurrent_activation_fn = recurrent_activation_fn
Example #6
0
def _get_arg_values(arg, value, cls):
    if isinstance(value, bool):
        return BooleanValue()
    if isinstance(value, int):
        return DiscreteValue(*_get_integer_values(arg, value, cls))
    if isinstance(value, float):
        return ContinuousValue(*_get_float_values(arg, value, cls))
    if isinstance(value, str):
        values = _find_parameter_values(arg, cls)
        return CategoricalValue(*values) if values else None
    return None
Example #7
0
 def __init__(
         self,
         dm: DiscreteValue(min=0, max=2),
         dbow_words: DiscreteValue(min=-100, max=100),
         dm_concat: DiscreteValue(min=-100, max=100),
         dm_tag_count: DiscreteValue(min=0, max=2),
         alpha: ContinuousValue(min=0.001, max=0.075),
         epochs: DiscreteValue(min=2, max=10),
         window: DiscreteValue(min=2, max=10),
 ):
     self.dm = int(dm)
     self.dbow_words = int(dbow_words)
     self.dm_concat = int(dm_concat)
     self.dm_tag_count = int(dm_tag_count)
     self.alpha = alpha
     self.epochs = int(epochs)
     self.window = int(window)
Example #8
0
def _get_float_values(arg, value, cls):
    if value in [inf, nan]:
        return None

    if value > 0:
        min_value = -10 * value
        max_value = 10 * value
    elif value == 0:
        min_value = -1
        max_value = 1
    else:
        return None

    # binary search for minimum value
    left = min_value
    right = value

    while abs(left - right) > 1e-2:
        current_value = round((left + right) / 2, 3)
        if _try(cls, arg, current_value):
            right = current_value
        else:
            left = current_value

    min_value = right

    # binary search for maximum value
    left = value
    right = max_value

    while abs(left - right) > 1e-2:
        current_value = round((left + right) / 2, 3)
        if _try(cls, arg, current_value):
            left = current_value
        else:
            right = current_value

    max_value = left

    if max_value - min_value >= 2 * value:
        return ContinuousValue(min=min_value, max=max_value)

    return None
Example #9
0
 def __init__(self, rate: ContinuousValue(0, 0.5), **kwargs):
     super().__init__(rate=rate, **kwargs)
Example #10
0
 def __init__(self, rate: ContinuousValue(0, 0.5)):
     super().__init__(rate=rate)
Example #11
0
 def __init__(self, penalty: CategoricalValue("l1", "l2"),
              C: ContinuousValue(0.1, 10)):
     super().__init__(penalty=penalty, C=C, solver="liblinear")
Example #12
0
 def __init__(self, var_smoothing: ContinuousValue(1e-10, 0.1)):
     super().__init__(var_smoothing=var_smoothing)
Example #13
0
 def __init__(
         self,
         kernel: CategoricalValue("rbf", "linear", "poly"),
         C: ContinuousValue(0.1, 10),
 ):
     super().__init__(C=C, kernel=kernel)