Example #1
0
def test_kfac_jacobian_mnist():
    u.seed_random(1)

    data_width = 3
    d = [data_width**2, 8, 10]
    model: u.SimpleMLP = u.SimpleMLP(d, nonlin=False)
    autograd_lib.register(model)

    batch_size = 4
    stats_steps = 2
    n = batch_size * stats_steps

    dataset = u.TinyMNIST(dataset_size=n,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    activations = {}
    jacobians = defaultdict(lambda: AttrDefault(float))
    total_data = []

    # sum up statistics over n examples
    for train_step in range(stats_steps):
        data, targets = next(train_iter)
        total_data.append(data)

        activations = {}

        def save_activations(layer, A, _):
            activations[layer] = A
            jacobians[layer].AA += torch.einsum("ni,nj->ij", A, A)

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets)

        def compute_jacobian(layer, _, B):
            A = activations[layer]
            jacobians[layer].BB += torch.einsum("ni,nj->ij", B, B)
            jacobians[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A)

        with autograd_lib.module_hook(compute_jacobian):
            autograd_lib.backward_jacobian(output)

    for layer in model.layers:
        jacobian0 = jacobians[layer]
        jacobian_full = torch.einsum('kl,ij->kilj', jacobian0.BB / n,
                                     jacobian0.AA / n)
        jacobian_diag = jacobian0.diag / n

        J = u.jacobian(model(torch.cat(total_data)), layer.weight)
        J_autograd = torch.einsum('noij,nokl->ijkl', J, J) / n
        u.check_equal(jacobian_full, J_autograd)

        u.check_equal(jacobian_diag, torch.einsum('ikik->ik', J_autograd))
Example #2
0
def test_full_hessian_xent_mnist_multilayer():
    """Test regular and diagonal hessian computation."""
    u.seed_random(1)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 6, 10]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected2(d, nonlin=False, bias=True)
    autograd_lib.register(model)
    dataset = u.TinyMNIST(dataset_size=batch_size,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    hess = defaultdict(float)
    hess_diag = defaultdict(float)
    for train_step in range(train_steps):
        data, targets = next(train_iter)

        activations = {}

        def save_activations(layer, a, _):
            activations[layer] = a

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets)

        def compute_hess(layer, _, B):
            A = activations[layer]
            BA = torch.einsum("nl,ni->nli", B, A)
            hess[layer] += torch.einsum('nli,nkj->likj', BA, BA)
            hess_diag[layer] += torch.einsum("ni,nj->ij", B * B, A * A)

        with autograd_lib.module_hook(compute_hess):
            autograd_lib.backward_hessian(output,
                                          loss='CrossEntropy',
                                          retain_graph=True)

        # compute Hessian through autograd
        H_autograd = u.hessian(loss, model.layers[0].weight)
        u.check_close(hess[model.layers[0]] / batch_size, H_autograd)
        diag_autograd = torch.einsum('lili->li', H_autograd)
        u.check_close(diag_autograd, hess_diag[model.layers[0]] / batch_size)

        H_autograd = u.hessian(loss, model.layers[1].weight)
        u.check_close(hess[model.layers[1]] / batch_size, H_autograd)
        diag_autograd = torch.einsum('lili->li', H_autograd)
        u.check_close(diag_autograd, hess_diag[model.layers[1]] / batch_size)
Example #3
0
def test_kfac_fisher_mnist():
    u.seed_random(1)

    data_width = 3
    d = [data_width**2, 8, 10]
    model: u.SimpleMLP = u.SimpleMLP(d, nonlin=False)
    autograd_lib.register(model)

    batch_size = 4
    stats_steps = 2
    n = batch_size * stats_steps

    dataset = u.TinyMNIST(dataset_size=n,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    activations = {}
    fishers = defaultdict(lambda: AttrDefault(float))
    total_data = []

    # sum up statistics over n examples
    for train_step in range(stats_steps):
        data, targets = next(train_iter)
        total_data.append(data)

        activations = {}

        def save_activations(layer, A, _):
            activations[layer] = A
            fishers[layer].AA += torch.einsum("ni,nj->ij", A, A)

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets) * len(
                data)  # remove data normalization

        def compute_fisher(layer, _, B):
            A = activations[layer]
            fishers[layer].BB += torch.einsum("ni,nj->ij", B, B)
            fishers[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A)

        with autograd_lib.module_hook(compute_fisher):
            autograd_lib.backward_jacobian(output)

    for layer in model.layers:
        fisher0 = fishers[layer]
        fisher_full = torch.einsum('kl,ij->kilj', fisher0.BB / n,
                                   fisher0.AA / n)
        fisher_diag = fisher0.diag / n

        u.check_equal(torch.einsum('ikik->ik', fisher_full), fisher_diag)
Example #4
0
def _test_kfac_hessian_xent_mnist():
    u.seed_random(1)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 10]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected2(d, nonlin=False, bias=True)
    autograd_lib.register(model)
    dataset = u.TinyMNIST(dataset_size=batch_size,
                          data_width=data_width,
                          original_targets=True)
    trainloader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batch_size,
                                              shuffle=False)
    train_iter = iter(trainloader)

    loss_fn = torch.nn.CrossEntropyLoss()

    activations = {}
    hess = defaultdict(lambda: AttrDefault(float))
    for train_step in range(train_steps):
        data, targets = next(train_iter)

        activations = {}

        def save_activations(layer, a, _):
            activations[layer] = a

        with autograd_lib.module_hook(save_activations):
            output = model(data)
            loss = loss_fn(output, targets)

        def compute_hess(layer, _, B):
            A = activations[layer]
            hess[layer].AA += torch.einsum("ni,nj->ij", A, A)
            hess[layer].BB += torch.einsum("ni,nj->ij", B, B)

        with autograd_lib.module_hook(compute_hess):
            autograd_lib.backward_hessian(output,
                                          loss='CrossEntropy',
                                          retain_graph=True)

        hess_factored = hess[model.layers[0]]
        hess0 = torch.einsum('kl,ij->kilj', hess_factored.BB / n,
                             hess_factored.AA / o)  # hess for sum loss
        hess0 /= n  # hess for mean loss

        # compute Hessian through autograd
        H_autograd = u.hessian(loss, model.layers[0].weight)
        rel_error = torch.norm(
            (hess0 - H_autograd).flatten()) / torch.norm(H_autograd.flatten())
        assert rel_error < 0.01  # 0.0057
Example #5
0
def test_full_hessian_xent_kfac2():
    """Test with uneven layers."""
    u.seed_random(1)
    torch.set_default_dtype(torch.float64)

    batch_size = 1
    d = [3, 2]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected2(d, nonlin=True, bias=False)
    autograd_lib.register(model)
    loss_fn = torch.nn.CrossEntropyLoss()

    data = u.to_logits(torch.tensor([[0.7, 0.2, 0.1]]))
    targets = torch.tensor([0])

    data = data.repeat([3, 1])
    targets = targets.repeat([3])
    n = len(data)

    activations = {}
    hess = defaultdict(lambda: AttrDefault(float))

    for i in range(n):

        def save_activations(layer, A, _):
            activations[layer] = A
            hess[layer].AA += torch.einsum("ni,nj->ij", A, A)

        with autograd_lib.module_hook(save_activations):
            data_batch = data[i:i + 1]
            targets_batch = targets[i:i + 1]
            Y = model(data_batch)
            o = Y.shape[1]
            loss = loss_fn(Y, targets_batch)

        def compute_hess(layer, _, B):
            hess[layer].BB += torch.einsum("ni,nj->ij", B, B)

        with autograd_lib.module_hook(compute_hess):
            autograd_lib.backward_hessian(Y, loss='CrossEntropy')

    # expand
    hess_factored = hess[model.layers[0]]
    hess0 = torch.einsum('kl,ij->kilj', hess_factored.BB / n,
                         hess_factored.AA / o)  # hess for sum loss
    hess0 /= n  # hess for mean loss

    # check against autograd
    # 0.1459
    Y = model(data)
    loss = loss_fn(Y, targets)
    hess_autograd = u.hessian(loss, model.layers[0].weight)
    u.check_equal(hess_autograd, hess0)
Example #6
0
def _test_refactored_stats():
    gl.project_name = 'test'
    gl.logdir_base = '/tmp/runs'
    run_name = 'test_hessian_multibatch'
    u.setup_logdir_and_event_writer(run_name=run_name)

    loss_type = 'CrossEntropy'
    data_width = 2
    n = 4
    d1 = data_width ** 2
    o = 10
    d = [d1, o]

    model = u.SimpleFullyConnected2(d, bias=False, nonlin=False)
    model = model.to(gl.device)

    dataset = u.TinyMNIST(data_width=data_width, dataset_size=n, loss_type=loss_type)
    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=n, shuffle=False)
    stats_iter = u.infinite_iter(stats_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:  # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0

    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)
    data, targets = stats_data, stats_targets

    covG = autograd_lib.layer_cov_dict()
    covH = autograd_lib.layer_cov_dict()
    covJ = autograd_lib.layer_cov_dict()

    autograd_lib.register(model)

    A = {}
    with autograd_lib.save_activations(A):
        output = model(data)
        loss = loss_fn(output, targets)

    Acov = autograd_lib.ModuleDict(autograd_lib.SecondOrder)
    for layer, activations in A.items():
        Acov[layer].accumulate(activations)

    autograd_lib.set_default_activations(A)   # set activations to use by default when constructing cov matrices
    autograd_lib.set_default_Acov(Acov)

    # saves backprop covariances
    autograd_lib.backward_accum(loss, 1, covG)
    autograd_lib.backward_accum(output, autograd_lib.xent_bwd, covH)
    autograd_lib.backward_accum(output, autograd_lib.identity_bwd, covJ)
Example #7
0
def test_full_hessian_xent_multibatch():
    u.seed_random(1)
    torch.set_default_dtype(torch.float64)

    batch_size = 1
    d = [2, 2]
    o = d[-1]
    n = batch_size
    train_steps = 1

    model: u.SimpleModel = u.SimpleFullyConnected2(d, nonlin=True, bias=True)
    model.layers[0].weight.data.copy_(torch.eye(2))
    autograd_lib.register(model)
    loss_fn = torch.nn.CrossEntropyLoss()

    data = u.to_logits(torch.tensor([[0.7, 0.3]]))
    targets = torch.tensor([0])

    data = data.repeat([3, 1])
    targets = targets.repeat([3])
    n = len(data)

    activations = {}
    hess = defaultdict(float)

    def save_activations(layer, a, _):
        activations[layer] = a

    for i in range(n):
        with autograd_lib.module_hook(save_activations):
            data_batch = data[i:i + 1]
            targets_batch = targets[i:i + 1]
            Y = model(data_batch)
            loss = loss_fn(Y, targets_batch)

        def compute_hess(layer, _, B):
            A = activations[layer]
            BA = torch.einsum("nl,ni->nli", B, A)
            hess[layer] += torch.einsum('nli,nkj->likj', BA, BA)

        with autograd_lib.module_hook(compute_hess):
            autograd_lib.backward_hessian(Y, loss='CrossEntropy')

    # check against autograd
    # 0.1459
    Y = model(data)
    loss = loss_fn(Y, targets)
    hess_autograd = u.hessian(loss, model.layers[0].weight)
    hess0 = hess[model.layers[0]] / n
    u.check_equal(hess_autograd, hess0)
Example #8
0
def _test_activations_contextmanager():
    d = 5
    model = simple_model(d, num_layers=2)
    autograd_lib.register(model)

    A1, A2, A3 = {}, {}, {}
    x = torch.ones(1, d)

    with autograd_lib.save_activations(A1):
        y = model(x)
        with autograd_lib.save_activations(A2):
            z = model[1](x)

    context_ids = autograd_lib.global_settings.last_captured_activations_contextid
    assert context_ids[model[1]] == context_ids[model[0]] + 1
Example #9
0
def create_toy_model():
    """
    Create model from https://www.wolframcloud.com/obj/yaroslavvb/newton/linear-jacobians-and-hessians.nb
    PyTorch works on transposed representation, hence to obtain Y from notebook, do model(A.T).T
    """

    model: u.SimpleFullyConnected2 = u.SimpleFullyConnected2([2, 2, 2],
                                                             bias=False)
    autograd_lib.register(model)

    A = torch.tensor([[-1., 4], [3, 0]])
    B = torch.tensor([[-4., 3], [2, 6]])
    X = torch.tensor([[-5., 0], [-2, -6]], requires_grad=True)

    model.layers[0].weight.data.copy_(X)
    model.layers[1].weight.data.copy_(B.t())
    return A, model
Example #10
0
def test_hooks():
    d = 1
    model = simple_model(d, num_layers=5)
    autograd_lib.register(model)

    A1, A2, A3 = {}, {}, {}
    x = torch.ones(1, d)

    with autograd_lib.save_activations(A1):
        y = model(2 * x)

    with autograd_lib.save_activations(A2):
        with autograd_lib.save_activations(A3):
            y = model(x)

    B1 = {}
    B2 = {}
    with autograd_lib.extend_backprops(B1):
        y.backward(x, retain_graph=True)

    model[2].weight.requires_grad = False
    for layer in model:
        del layer.weight.grad

    # model.clear_grads()
    with autograd_lib.extend_backprops(B2):
        y.backward(2 * x)

    print(B2.values())
    for layer in model:
        print(layer.weight.grad)

    for layer in model:
        assert A1[layer] == 2 * x
        assert A2[layer] == x
        assert A3[layer] == x
        assert B1[layer] == [x]
        assert B2[layer] == [2 * x]

    autograd_lib.unregister()
Example #11
0
def _test_explicit_hessian_refactored():

    """Check computation of hessian of loss(B'WA) from https://github.com/yaroslavvb/kfac_pytorch/blob/master/derivation.pdf


    """

    torch.set_default_dtype(torch.float64)
    A = torch.tensor([[-1., 4], [3, 0]])
    B = torch.tensor([[-4., 3], [2, 6]])
    X = torch.tensor([[-5., 0], [-2, -6]], requires_grad=True)

    Y = B.t() @ X @ A
    u.check_equal(Y, [[-52, 64], [-81, -108]])
    loss = torch.sum(Y * Y) / 2
    hess0 = u.hessian(loss, X).reshape([4, 4])
    hess1 = u.Kron(A @ A.t(), B @ B.t())

    u.check_equal(loss, 12512.5)

    # Do a test using Linear layers instead of matrix multiplies
    model: u.SimpleFullyConnected2 = u.SimpleFullyConnected2([2, 2, 2], bias=False)
    model.layers[0].weight.data.copy_(X)

    # Transpose to match previous results, layers treat dim0 as batch dimension
    u.check_equal(model.layers[0](A.t()).t(), [[5, -20], [-16, -8]])  # XA = (A'X0)'

    model.layers[1].weight.data.copy_(B.t())
    u.check_equal(model(A.t()).t(), Y)

    Y = model(A.t()).t()    # transpose to data-dimension=columns
    loss = torch.sum(Y * Y) / 2
    loss.backward()

    u.check_equal(model.layers[0].weight.grad, [[-2285, -105], [-1490, -1770]])
    G = B @ Y @ A.t()
    u.check_equal(model.layers[0].weight.grad, G)

    autograd_lib.register(model)
    activations_dict = autograd_lib.ModuleDict()  # todo(y): make save_activations ctx manager automatically create A
    with autograd_lib.save_activations(activations_dict):
        Y = model(A.t())

    Acov = autograd_lib.ModuleDict(autograd_lib.SecondOrderCov)
    for layer, activations in activations_dict.items():
        print(layer, activations)
        Acov[layer].accumulate(activations, activations)
    autograd_lib.set_default_activations(activations_dict)
    autograd_lib.set_default_Acov(Acov)

    B = autograd_lib.ModuleDict(autograd_lib.SymmetricFourthOrderCov)
    autograd_lib.backward_accum(Y, "identity", B, retain_graph=False)

    print(B[model.layers[0]])

    autograd_lib.backprop_hess(Y, hess_type='LeastSquares')
    autograd_lib.compute_hess(model, method='kron', attr_name='hess_kron', vecr_order=False, loss_aggregation='sum')
    param = model.layers[0].weight

    hess2 = param.hess_kron
    print(hess2)

    u.check_equal(hess2, [[425, 170, -75, -30], [170, 680, -30, -120], [-75, -30, 225, 90], [-30, -120, 90, 360]])

    # Gradient test
    model.zero_grad()
    loss.backward()
    u.check_close(u.vec(G).flatten(), u.Vec(param.grad))

    # Newton step test
    # Method 0: PyTorch native autograd
    newton_step0 = param.grad.flatten() @ torch.pinverse(hess0)
    newton_step0 = newton_step0.reshape(param.shape)
    u.check_equal(newton_step0, [[-5, 0], [-2, -6]])

    # Method 1: colummn major order
    ihess2 = hess2.pinv()
    u.check_equal(ihess2.LL, [[1/16, 1/48], [1/48, 17/144]])
    u.check_equal(ihess2.RR, [[2/45, -(1/90)], [-(1/90), 1/36]])
    u.check_equal(torch.flatten(hess2.pinv() @ u.vec(G)), [-5, -2, 0, -6])
    newton_step1 = (ihess2 @ u.Vec(param.grad)).matrix_form()

    # Method2: row major order
    ihess2_rowmajor = ihess2.commute()
    newton_step2 = ihess2_rowmajor @ u.Vecr(param.grad)
    newton_step2 = newton_step2.matrix_form()

    u.check_equal(newton_step0, newton_step1)
    u.check_equal(newton_step0, newton_step2)
Example #12
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')

    parser.add_argument('--wandb', type=int, default=0, help='log to weights and biases')
    parser.add_argument('--autograd_check', type=int, default=0, help='autograd correctness checks')
    parser.add_argument('--logdir', type=str, default='/tmp/runs/curv_train_tiny/run')

    parser.add_argument('--nonlin', type=int, default=1, help="whether to add ReLU nonlinearity between layers")
    parser.add_argument('--bias', type=int, default=1, help="whether to add bias between layers")

    parser.add_argument('--layer', type=int, default=-1, help="restrict updates to this layer")
    parser.add_argument('--data_width', type=int, default=28)
    parser.add_argument('--targets_width', type=int, default=28)
    parser.add_argument('--hess_samples', type=int, default=1,
                        help='number of samples when sub-sampling outputs, 0 for exact hessian')
    parser.add_argument('--hess_kfac', type=int, default=0, help='whether to use KFAC approximation for hessian')
    parser.add_argument('--compute_rho', type=int, default=0, help='use expensive method to compute rho')
    parser.add_argument('--skip_stats', type=int, default=0, help='skip all stats collection')

    parser.add_argument('--dataset_size', type=int, default=60000)
    parser.add_argument('--train_steps', type=int, default=100, help="this many train steps between stat collection")
    parser.add_argument('--stats_steps', type=int, default=1000000, help="total number of curvature stats collections")

    parser.add_argument('--full_batch', type=int, default=0, help='do stats on the whole dataset')
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--weight_decay', type=float, default=0)
    parser.add_argument('--momentum', type=float, default=0.9)
    parser.add_argument('--dropout', type=int, default=0)
    parser.add_argument('--swa', type=int, default=0)
    parser.add_argument('--lmb', type=float, default=1e-3)

    parser.add_argument('--train_batch_size', type=int, default=64)
    parser.add_argument('--stats_batch_size', type=int, default=10000)
    parser.add_argument('--stats_num_batches', type=int, default=1)
    parser.add_argument('--run_name', type=str, default='noname')
    parser.add_argument('--launch_blocking', type=int, default=0)
    parser.add_argument('--sampled', type=int, default=0)
    parser.add_argument('--curv', type=str, default='kfac',
                        help='decomposition to use for curvature estimates: zero_order, kfac, isserlis or full')
    parser.add_argument('--log_spectra', type=int, default=0)

    u.seed_random(1)
    gl.args = parser.parse_args()
    args = gl.args
    u.seed_random(1)

    gl.project_name = 'train_ciresan'
    u.setup_logdir_and_event_writer(args.run_name)
    print(f"Logging to {gl.logdir}")

    d1 = 28 * 28
    d = [784, 2500, 2000, 1500, 1000, 500, 10]

    # number of samples per datapoint. Used to normalize kfac
    model = u.SimpleFullyConnected2(d, nonlin=args.nonlin, bias=args.bias, dropout=args.dropout)
    model = model.to(gl.device)
    autograd_lib.register(model)

    assert args.dataset_size >= args.stats_batch_size
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, original_targets=True,
                          dataset_size=args.dataset_size)
    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    assert not args.full_batch, "fixme: validation still uses stats_iter"
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=True,
                                                   drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)
    else:
        stats_iter = None

    test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, train=False,
                               original_targets=True,
                               dataset_size=args.dataset_size)
    test_eval_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.stats_batch_size, shuffle=False,
                                                   drop_last=False)
    train_eval_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False,
                                                    drop_last=False)

    loss_fn = torch.nn.CrossEntropyLoss()
    autograd_lib.add_hooks(model)
    autograd_lib.disable_hooks()

    gl.token_count = 0
    last_outer = 0

    for step in range(args.stats_steps):
        epoch = gl.token_count // 60000
        lr = optimizer.param_groups[0]['lr']
        print('token_count', gl.token_count)
        if last_outer:
            u.log_scalars({"time/outer": 1000 * (time.perf_counter() - last_outer)})
            print(f'time: {time.perf_counter() - last_outer:.2f}')
        last_outer = time.perf_counter()

        with u.timeit("validate"):
            val_accuracy, val_loss = validate(model, test_eval_loader, f'test (epoch {epoch})')
            train_accuracy, train_loss = validate(model, train_eval_loader, f'train (epoch {epoch})')

        # save log
        metrics = {'epoch': epoch, 'val_accuracy': val_accuracy, 'val_loss': val_loss,
                   'train_loss': train_loss, 'train_accuracy': train_accuracy,
                   'lr': optimizer.param_groups[0]['lr'],
                   'momentum': optimizer.param_groups[0].get('momentum', 0)}
        u.log_scalars(metrics)

        def mom_update(buffer, val):
            buffer *= 0.9
            buffer += val * 0.1

        if not args.skip_stats:
            # number of samples passed through
            n = args.stats_batch_size * args.stats_num_batches

            # quanti
            forward_stats = defaultdict(lambda: AttrDefault(float))

            hessians = defaultdict(lambda: AttrDefault(float))
            jacobians = defaultdict(lambda: AttrDefault(float))
            fishers = defaultdict(lambda: AttrDefault(float))  # empirical fisher/gradient
            quad_fishers = defaultdict(lambda: AttrDefault(float))  # gradient statistics that depend on fisher (4th order moments)
            train_regrets = defaultdict(list)
            test_regrets1 = defaultdict(list)
            test_regrets2 = defaultdict(list)
            train_regrets_opt = defaultdict(list)
            test_regrets_opt = defaultdict(list)
            cosines = defaultdict(list)
            dot_products = defaultdict(list)
            hessians_histograms = defaultdict(lambda: AttrDefault(u.MyList))
            jacobians_histograms = defaultdict(lambda: AttrDefault(u.MyList))
            fishers_histograms = defaultdict(lambda: AttrDefault(u.MyList))
            quad_fishers_histograms = defaultdict(lambda: AttrDefault(u.MyList))

            current = None
            current_histograms = None

            for i in range(args.stats_num_batches):
                activations = {}
                backprops = {}

                def save_activations(layer, A, _):
                    activations[layer] = A
                    forward_stats[layer].AA += torch.einsum("ni,nj->ij", A, A)

                print('forward')
                with u.timeit("stats_forward"):
                    with autograd_lib.module_hook(save_activations):
                        data, targets = next(stats_iter)
                        output = model(data)
                        loss = loss_fn(output, targets) * len(output)

                def compute_stats(layer, _, B):
                    A = activations[layer]
                    if current == fishers:
                        backprops[layer] = B

                    # about 27ms per layer
                    with u.timeit('compute_stats'):
                        current[layer].BB += torch.einsum("ni,nj->ij", B, B)  # TODO(y): index consistency
                        current[layer].diag += torch.einsum("ni,nj->ij", B * B, A * A)
                        current[layer].BA += torch.einsum("ni,nj->ij", B, A)
                        current[layer].a += torch.einsum("ni->i", A)
                        current[layer].b += torch.einsum("nk->k", B)
                        current[layer].norm2 += ((A * A).sum(dim=1) * (B * B).sum(dim=1)).sum()

                        # compute curvatures in direction of all gradiennts
                        if current is fishers:
                            assert args.stats_num_batches == 1, "not tested on more than one stats step, currently reusing aggregated moments"
                            hess = hessians[layer]
                            jac = jacobians[layer]
                            Bh, Ah = B @ hess.BB / n, A @ forward_stats[layer].AA / n
                            Bj, Aj = B @ jac.BB / n, A @ forward_stats[layer].AA / n
                            norms = ((A * A).sum(dim=1) * (B * B).sum(dim=1))

                            current[layer].min_norm2 = min(norms)
                            current[layer].median_norm2 = torch.median(norms)
                            current[layer].max_norm2 = max(norms)

                            norms2_hess = ((Ah * A).sum(dim=1) * (Bh * B).sum(dim=1))
                            norms2_jac = ((Aj * A).sum(dim=1) * (Bj * B).sum(dim=1))

                            current[layer].norm += norms.sum()
                            current_histograms[layer].norms.extend(torch.sqrt(norms))
                            current[layer].curv_hess += (skip_nans(norms2_hess / norms)).sum()
                            current_histograms[layer].curv_hess.extend(skip_nans(norms2_hess / norms))
                            current[layer].curv_hess_max += (skip_nans(norms2_hess / norms)).max()
                            current[layer].curv_hess_median += (skip_nans(norms2_hess / norms)).median()

                            current_histograms[layer].curv_jac.extend(skip_nans(norms2_jac / norms))
                            current[layer].curv_jac += (skip_nans(norms2_jac / norms)).sum()
                            current[layer].curv_jac_max += (skip_nans(norms2_jac / norms)).max()
                            current[layer].curv_jac_median += (skip_nans(norms2_jac / norms)).median()

                            current[layer].a_sparsity += torch.sum(A <= 0).float() / A.numel()
                            current[layer].b_sparsity += torch.sum(B <= 0).float() / B.numel()

                            current[layer].mean_activation += torch.mean(A)
                            current[layer].mean_activation2 += torch.mean(A*A)
                            current[layer].mean_backprop = torch.mean(B)
                            current[layer].mean_backprop2 = torch.mean(B*B)

                            current[layer].norms_hess += torch.sqrt(norms2_hess).sum()
                            current_histograms[layer].norms_hess.extend(torch.sqrt(norms2_hess))
                            current[layer].norms_jac += norms2_jac.sum()
                            current_histograms[layer].norms_jac.extend(torch.sqrt(norms2_jac))

                            normalized_moments = copy.copy(hessians[layer])
                            normalized_moments.AA = forward_stats[layer].AA
                            normalized_moments = u.divide_attributes(normalized_moments, n)

                            train_regrets_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=0, m=normalized_moments,
                                                                        approx=args.curv)
                            test_regrets1_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=1, m=normalized_moments,
                                                                        approx=args.curv)
                            test_regrets2_ = autograd_lib.offset_losses(A, B, alpha=lr, offset=2, m=normalized_moments,
                                                                        approx=args.curv)
                            test_regrets_opt_ = autograd_lib.offset_losses(A, B, alpha=None, offset=2,
                                                                           m=normalized_moments, approx=args.curv)
                            train_regrets_opt_ = autograd_lib.offset_losses(A, B, alpha=None, offset=0,
                                                                            m=normalized_moments, approx=args.curv)
                            cosines_ = autograd_lib.offset_cosines(A, B)
                            train_regrets[layer].extend(train_regrets_)
                            test_regrets1[layer].extend(test_regrets1_)
                            test_regrets2[layer].extend(test_regrets2_)
                            train_regrets_opt[layer].extend(train_regrets_opt_)
                            test_regrets_opt[layer].extend(test_regrets_opt_)
                            cosines[layer].extend(cosines_)
                            dot_products[layer].extend(autograd_lib.offset_dotprod(A, B))

                        # statistics of the form g.Sigma.g
                        elif current == quad_fishers:
                            hess = hessians[layer]
                            sigma = fishers[layer]
                            jac = jacobians[layer]
                            Bs, As = B @ sigma.BB / n, A @ forward_stats[layer].AA / n
                            Bh, Ah = B @ hess.BB / n, A @ forward_stats[layer].AA / n
                            Bj, Aj = B @ jac.BB / n, A @ forward_stats[layer].AA / n

                            norms = ((A * A).sum(dim=1) * (B * B).sum(dim=1))
                            norms2_hess = ((Ah * A).sum(dim=1) * (Bh * B).sum(dim=1))
                            norms2_jac = ((Aj * A).sum(dim=1) * (Bj * B).sum(dim=1))
                            norms_sigma = ((As * A).sum(dim=1) * (Bs * B).sum(dim=1))

                            current[layer].norm += norms.sum()  # TODO(y) remove, redundant with norm2 above
                            current[layer].curv_sigma += (skip_nans(norms_sigma / norms)).sum()
                            current[layer].curv_sigma_max = skip_nans(norms_sigma / norms).max()
                            current[layer].curv_sigma_median = skip_nans(norms_sigma / norms).median()
                            current[layer].curv_hess += skip_nans(norms2_hess / norms).sum()
                            current[layer].curv_hess_max += skip_nans(norms2_hess / norms).max()
                            current[layer].lyap_hess_mean += skip_nans(norms_sigma / norms2_hess).mean()
                            current[layer].lyap_hess_max = max(skip_nans(norms_sigma/norms2_hess))
                            current[layer].lyap_jac_mean += skip_nans(norms_sigma / norms2_jac).mean()
                            current[layer].lyap_jac_max = max(skip_nans(norms_sigma/norms2_jac))

                print('backward')
                with u.timeit("backprop_H"):
                    with autograd_lib.module_hook(compute_stats):
                        current = hessians
                        current_histograms = hessians_histograms
                        autograd_lib.backward_hessian(output, loss='CrossEntropy', sampled=args.sampled,
                                                      retain_graph=True)  # 600 ms
                        current = jacobians
                        current_histograms = jacobians_histograms
                        autograd_lib.backward_jacobian(output, sampled=args.sampled, retain_graph=True)  # 600 ms
                        current = fishers
                        current_histograms = fishers_histograms
                        model.zero_grad()
                        loss.backward(retain_graph=True)  # 60 ms
                        current = quad_fishers
                        current_histograms = quad_fishers_histograms
                        model.zero_grad()
                        loss.backward()  # 60 ms

            print('summarize')
            for (i, layer) in enumerate(model.layers):
                stats_dict = {'hessian': hessians, 'jacobian': jacobians, 'fisher': fishers}

                # evaluate stats from
                # https://app.wandb.ai/yaroslavvb/train_ciresan/runs/425pu650?workspace=user-yaroslavvb
                for stats_name in stats_dict:
                    s = AttrDict()
                    stats = stats_dict[stats_name][layer]

                    for key in forward_stats[layer]:
                        # print(f'copying {key} in {stats_name}, {layer}')
                        try:
                            assert stats[key] == float()
                        except:
                            f"Trying to overwrite {key} in {stats_name}, {layer}"
                        stats[key] = forward_stats[layer][key]

                    diag: torch.Tensor = stats.diag / n

                    # jacobian:
                    # curv in direction of gradient goes down to roughly 0.3-1
                    # maximum curvature goes up to 1000-2000
                    #
                    # Hessian:
                    # max curv goes down to 1, in direction of gradient 0.0001

                    s.diag_l2 = torch.max(diag)  # 40 - 3000 smaller than kfac l2 for jac
                    s.diag_fro = torch.norm(
                        diag)  # jacobian grows to 0.5-1.5, rest falls, layer-5 has phase transition, layer-4 also
                    s.diag_trace = diag.sum()  # jacobian grows 0-1000 (first), 0-150 (last). Almost same as kfac_trace (771 vs 810 kfac). Jacobian has up/down phase transition
                    s.diag_average = diag.mean()

                    # normalize for mean loss
                    BB = stats.BB / n
                    AA = stats.AA / n
                    # A_evals, _ = torch.symeig(AA)   # averaging 120ms per hit, 90 hits
                    # B_evals, _ = torch.symeig(BB)

                    # s.kfac_l2 = torch.max(A_evals) * torch.max(B_evals)    # 60x larger than diag_l2. layer0/hess has down/up phase transition. layer5/jacobian has up/down phase transition
                    s.kfac_trace = torch.trace(AA) * torch.trace(BB)  # 0/hess down/up tr, 5/jac sharp phase transition
                    s.kfac_fro = torch.norm(stats.AA) * torch.norm(
                        stats.BB)  # 0/hess has down/up tr, 5/jac up/down transition
                    # s.kfac_erank = s.kfac_trace / s.kfac_l2   # first layer has 25, rest 15, all layers go down except last, last noisy
                    # s.kfac_erank_fro = s.kfac_trace / s.kfac_fro / max(stats.BA.shape)

                    s.diversity = (stats.norm2 / n) / u.norm_squared(
                        stats.BA / n)  # gradient diversity. Goes up 3x. Bottom layer has most diversity. Jacobian diversity much less noisy than everythingelse

                    # discrepancy of KFAC based on exact values of diagonal approximation
                    # average difference normalized by average diagonal magnitude
                    diag_kfac = torch.einsum('ll,ii->li', BB, AA)
                    s.kfac_error = (torch.abs(diag_kfac - diag)).mean() / torch.mean(diag.abs())
                    u.log_scalars(u.nest_stats(f'layer-{i}/{stats_name}', s))

                # openai batch size stat
                s = AttrDict()
                hess = hessians[layer]
                jac = jacobians[layer]
                fish = fishers[layer]
                quad_fish = quad_fishers[layer]

                # the following check passes, but is expensive
                # if args.stats_num_batches == 1:
                #    u.check_close(fisher[layer].BA, layer.weight.grad)

                def trsum(A, B):
                    return (A * B).sum()  # computes tr(AB')

                grad = fishers[layer].BA / n
                s.grad_fro = torch.norm(grad)

                # get norms
                s.lyap_hess_max = quad_fish.lyap_hess_max
                s.lyap_hess_ave = quad_fish.lyap_hess_sum / n
                s.lyap_jac_max = quad_fish.lyap_jac_max
                s.lyap_jac_ave = quad_fish.lyap_jac_sum / n
                s.hess_trace = hess.diag.sum() / n
                s.jac_trace = jac.diag.sum() / n

                # Version 1 of Jain stochastic rates, use Hessian for curvature
                b = args.train_batch_size

                s.hess_curv = trsum((hess.BB / n) @ grad @ (hess.AA / n), grad) / trsum(grad, grad)
                s.jac_curv = trsum((jac.BB / n) @ grad @ (jac.AA / n), grad) / trsum(grad, grad)

                # compute gradient noise statistics
                # fish.BB has /n factor twice, hence don't need extra /n on fish.AA
                # after sampling, hess_noise,jac_noise became 100x smaller, but normalized is unaffected
                s.hess_noise = (trsum(hess.AA / n, fish.AA / n) * trsum(hess.BB / n, fish.BB / n))
                s.jac_noise = (trsum(jac.AA / n, fish.AA / n) * trsum(jac.BB / n, fish.BB / n))
                s.hess_noise_centered = s.hess_noise - trsum(hess.BB / n @ grad, grad @ hess.AA / n)
                s.jac_noise_centered = s.jac_noise - trsum(jac.BB / n @ grad, grad @ jac.AA / n)
                s.openai_gradient_noise = (fish.norms_hess / n) / trsum(hess.BB / n @ grad, grad @ hess.AA / n)

                s.mean_norm = torch.sqrt(fish.norm2) / n
                s.min_norm = torch.sqrt(fish.min_norm2)
                s.median_norm = torch.sqrt(fish.median_norm2)
                s.max_norm = torch.sqrt(fish.max_norm2)
                s.enorms = u.norm_squared(grad)
                s.a_sparsity = fish.a_sparsity
                s.b_sparsity = fish.b_sparsity
                s.mean_activation = fish.mean_activation
                s.msr_activation = torch.sqrt(fish.mean_activation2)
                s.mean_backprop = fish.mean_backprop
                s.msr_backprop = torch.sqrt(fish.mean_backprop2)

                s.norms_centered = fish.norm2 / n - u.norm_squared(grad)
                s.norms_hess = fish.norms_hess / n
                s.norms_jac = fish.norms_jac / n

                s.hess_curv_grad = fish.curv_hess / n  # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth.
                s.hess_curv_grad_max = fish.curv_hess_max   # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth.
                s.hess_curv_grad_median = fish.curv_hess_median   # phase transition, hits minimum loss in layer 1, then starts going up. Other layers take longer to reach minimum. Decreases with depth.
                s.sigma_curv_grad = quad_fish.curv_sigma / n
                s.sigma_curv_grad_max = quad_fish.curv_sigma_max
                s.sigma_curv_grad_median = quad_fish.curv_sigma_median
                s.band_bottou = 0.5 * lr * s.sigma_curv_grad / s.hess_curv_grad
                s.band_bottou_stoch = 0.5 * lr * quad_fish.curv_ratio / n
                s.band_yaida = 0.25 * lr * s.mean_norm**2
                s.band_yaida_centered = 0.25 * lr * s.norms_centered

                s.jac_curv_grad = fish.curv_jac / n  # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer.
                s.jac_curv_grad_max = fish.curv_jac_max  # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer.
                s.jac_curv_grad_median = fish.curv_jac_median  # this one has much lower variance than jac_curv. Reaches peak at 10k steps, also kfac error reaches peak there. Decreases with depth except for last layer.

                # OpenAI gradient noise statistics
                s.hess_noise_normalized = s.hess_noise_centered / (fish.norms_hess / n)
                s.jac_noise_normalized = s.jac_noise / (fish.norms_jac / n)

                train_regrets_, test_regrets1_, test_regrets2_, train_regrets_opt_, test_regrets_opt_, cosines_, dot_products_ = (torch.stack(r[layer]) for r in (train_regrets, test_regrets1, test_regrets2, train_regrets_opt, test_regrets_opt, cosines, dot_products))
                s.train_regret = train_regrets_.median()  # use median because outliers make it hard to see the trend
                s.test_regret1 = test_regrets1_.median()
                s.test_regret2 = test_regrets2_.median()
                s.test_regret_opt = test_regrets_opt_.median()
                s.train_regret_opt = train_regrets_opt_.median()
                s.mean_dot_product = torch.mean(dot_products_)
                s.median_dot_product = torch.median(dot_products_)
                a = [1, 2, 3]

                s.median_cosine = cosines_.median()
                s.mean_cosine = cosines_.mean()

                # get learning rates
                L1 = s.hess_curv_grad / n
                L2 = s.jac_curv_grad / n
                diversity = (fish.norm2 / n) / u.norm_squared(grad)
                robust_diversity = (fish.norm2 / n) / fish.median_norm2
                dotprod_diversity = fish.median_norm2 / s.median_dot_product
                s.lr1 = 2 / (L1 * diversity)
                s.lr2 = 2 / (L2 * diversity)
                s.lr3 = 2 / (L2 * robust_diversity)
                s.lr4 = 2 / (L2 * dotprod_diversity)

                hess_A = u.symeig_pos_evals(hess.AA / n)
                hess_B = u.symeig_pos_evals(hess.BB / n)
                fish_A = u.symeig_pos_evals(fish.AA / n)
                fish_B = u.symeig_pos_evals(fish.BB / n)
                jac_A = u.symeig_pos_evals(jac.AA / n)
                jac_B = u.symeig_pos_evals(jac.BB / n)
                u.log_scalars({f'layer-{i}/hessA_erank': erank(hess_A)})
                u.log_scalars({f'layer-{i}/hessB_erank': erank(hess_B)})
                u.log_scalars({f'layer-{i}/fishA_erank': erank(fish_A)})
                u.log_scalars({f'layer-{i}/fishB_erank': erank(fish_B)})
                u.log_scalars({f'layer-{i}/jacA_erank': erank(jac_A)})
                u.log_scalars({f'layer-{i}/jacB_erank': erank(jac_B)})
                gl.event_writer.add_histogram(f'layer-{i}/hist_hess_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_fish_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_jac_eig', u.outer(hess_A, hess_B).flatten(), gl.get_global_step())

                s.hess_l2 = max(hess_A) * max(hess_B)
                s.jac_l2 = max(jac_A) * max(jac_B)
                s.fish_l2 = max(fish_A) * max(fish_B)
                s.hess_trace = hess.diag.sum() / n

                s.jain1_sto = 1/(s.hess_trace + 2 * s.hess_l2)
                s.jain1_det = 1/s.hess_l2

                s.jain1_lr = (1 / b) * (1/s.jain1_sto) + (b - 1) / b * (1/s.jain1_det)
                s.jain1_lr = 2 / s.jain1_lr

                s.regret_ratio = (
                            train_regrets_opt_ / test_regrets_opt_).median()  # ratio between train and test regret, large means overfitting
                u.log_scalars(u.nest_stats(f'layer-{i}', s))

                # compute stats that would let you bound rho
                if i == 0:  # only compute this once, for output layer
                    hhh = hessians[model.layers[-1]].BB / n
                    fff = fishers[model.layers[-1]].BB / n
                    d = fff.shape[0]
                    L = u.lyapunov_spectral(hhh, 2 * fff, cond=1e-8)
                    L_evals = u.symeig_pos_evals(L)
                    Lcheap = fff @ u.pinv(hhh, cond=1e-8)
                    Lcheap_evals = u.eig_real(Lcheap)

                    u.log_scalars({f'mismatch/rho': d/erank(L_evals)})
                    u.log_scalars({f'mismatch/rho_cheap': d/erank(Lcheap_evals)})
                    u.log_scalars({f'mismatch/diagonalizability': erank(L_evals)/erank(Lcheap_evals)})  # 1 means diagonalizable
                    u.log_spectrum(f'mismatch/sigma', u.symeig_pos_evals(fff), loglog=False)
                    u.log_spectrum(f'mismatch/hess', u.symeig_pos_evals(hhh), loglog=False)
                    u.log_spectrum(f'mismatch/lyapunov', L_evals, loglog=True)
                    u.log_spectrum(f'mismatch/lyapunov_cheap', Lcheap_evals, loglog=True)

                gl.event_writer.add_histogram(f'layer-{i}/hist_grad_norms', u.to_numpy(fishers_histograms[layer].norms.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_grad_norms_hess', u.to_numpy(fishers_histograms[layer].norms_hess.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_curv_jac', u.to_numpy(fishers_histograms[layer].curv_jac.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_curv_hess', u.to_numpy(fishers_histograms[layer].curv_hess.value()), gl.get_global_step())
                gl.event_writer.add_histogram(f'layer-{i}/hist_cosines', u.to_numpy(cosines[layer]), gl.get_global_step())

                if args.log_spectra:
                    with u.timeit('spectrum'):
                        # 2/alpha
                        # s.jain1_lr = (1 / b) * s.jain1_sto + (b - 1) / b * s.jain1_det
                        # s.jain1_lr = 1 / s.jain1_lr

                        # hess.diag_trace, jac.diag_trace

                        # Version 2 of Jain stochastic rates, use Jacobian squared for curvature
                        s.jain2_sto = s.lyap_jac_max * s.jac_trace / s.lyap_jac_ave
                        s.jain2_det = s.jac_l2
                        s.jain2_lr = (1 / b) * s.jain2_sto + (b - 1) / b * s.jain2_det
                        s.jain2_lr = 1 / s.jain2_lr

                        u.log_spectrum(f'layer-{i}/hess_A', hess_A)
                        u.log_spectrum(f'layer-{i}/hess_B', hess_B)
                        u.log_spectrum(f'layer-{i}/hess_AB', u.outer(hess_A, hess_B).flatten())
                        u.log_spectrum(f'layer-{i}/jac_A', jac_A)
                        u.log_spectrum(f'layer-{i}/jac_B', jac_B)
                        u.log_spectrum(f'layer-{i}/fish_A', fish_A)
                        u.log_spectrum(f'layer-{i}/fish_B', fish_B)

                        u.log_scalars({f'layer-{i}/trace_ratio': fish_B.sum()/hess_B.sum()})

                        L = torch.eig(u.lyapunov_spectral(hess.BB, 2*fish.BB, cond=1e-8))[0]
                        L = L[:, 0]  # extract real part
                        L = L.sort()[0]
                        L = torch.flip(L, [0])

                        L_cheap = torch.eig(fish.BB @ u.pinv(hess.BB, cond=1e-8))[0]
                        L_cheap = L_cheap[:, 0]  # extract real part
                        L_cheap = L_cheap.sort()[0]
                        L_cheap = torch.flip(L_cheap, [0])

                        d = len(hess_B)
                        u.log_spectrum(f'layer-{i}/Lyap', L)
                        u.log_spectrum(f'layer-{i}/Lyap_cheap', L_cheap)

                        u.log_scalars({f'layer-{i}/dims': d})
                        u.log_scalars({f'layer-{i}/L_erank': erank(L)})
                        u.log_scalars({f'layer-{i}/L_cheap_erank': erank(L_cheap)})

                        u.log_scalars({f'layer-{i}/rho': d/erank(L)})
                        u.log_scalars({f'layer-{i}/rho_cheap': d/erank(L_cheap)})

        model.train()
        with u.timeit('train'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                optimizer.step()
                if args.weight_decay:
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.data.mul_(1 - args.weight_decay)

                gl.token_count += data.shape[0]

    gl.event_writer.close()
Example #13
0
def test_grad_norms():
    """Test computing gradient norms using various methods."""

    u.seed_random(1)
    # torch.set_default_dtype(torch.float64)

    data_width = 3
    batch_size = 2
    d = [data_width**2, 6, 10]
    o = d[-1]
    stats_steps = 2
    num_samples = batch_size * stats_steps  # number of samples used in computation of curvature stats

    model: u.SimpleModel = u.SimpleMLP(d, nonlin=True, bias=True)
    loss_fn = torch.nn.CrossEntropyLoss()
    autograd_lib.register(model)

    dataset = u.TinyMNIST(dataset_size=num_samples,
                          data_width=data_width,
                          original_targets=True)
    stats_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               shuffle=False)
    stats_iter = iter(stats_loader)

    moments = defaultdict(lambda: AttrDefault(float))
    norms = defaultdict(lambda: AttrDefault(MyList))
    data_batches = []
    targets_batches = []
    for stats_step in range(stats_steps):
        data, targets = next(stats_iter)
        data_batches.append(data)
        targets_batches.append(targets)

        activations = {}

        def forward_aggregate(layer, A, _):
            activations[layer] = A
            moments[layer].AA += torch.einsum('ni,nj->ij', A, A)
            moments[layer].a += torch.einsum("ni->i", A)

        with autograd_lib.module_hook(forward_aggregate):
            output = model(data)
            loss_fn(output, targets)

        def backward_aggregate(layer, _, B):
            A = activations[layer]
            moments[layer].b += torch.einsum("nk->k", B)
            moments[layer].BA += torch.einsum("nl,ni->li", B, A)
            moments[layer].BB += torch.einsum("nk,nl->kl", B, B)
            moments[layer].BABA += torch.einsum('nl,ni,nk,nj->likj', B, A, B,
                                                A)

        with autograd_lib.module_hook(backward_aggregate):
            autograd_lib.backward_hessian(output,
                                          loss='CrossEntropy',
                                          retain_graph=True)

    # compare against results using autograd
    data = torch.cat(data_batches)
    targets = torch.cat(targets_batches)

    with autograd_lib.save_activations2() as activations:
        loss = loss_fn(model(data), targets)

    def normalize_moments(d, n):
        result = AttrDict()
        for val in d:
            if type(d[val]) == torch.Tensor:
                result[val] = d[val] / n
        return result

    def compute_norms(layer, _, B):
        A = activations[layer]
        for kind in ('zero_order', 'kfac', 'isserlis', 'full'):
            normalized_moments = normalize_moments(moments[layer], num_samples)
            norms_list = getattr(norms[layer], kind)
            norms_list.extend(
                autograd_lib.grad_norms(A, B, normalized_moments, approx=kind))

    with autograd_lib.module_hook(compute_norms):
        model.zero_grad()
        (len(data) * loss).backward(retain_graph=True)

        print(norms[model.layers[0]].zero_order.value())

    for layer in model.layers:
        output = model(data)
        losses = torch.stack([
            loss_fn(output[i:i + 1], targets[i:i + 1])
            for i in range(len(data))
        ])
        grads = u.jacobian(losses, layer.weight)
        grad_norms = torch.einsum('nij,nij->n', grads, grads)
        u.check_close(grad_norms, norms[layer].zero_order)

        # test gradient norms with custom metric
        kfac_norms, isserlis_norms, full_norms = [
            u.to_pytorch(getattr(norms[layer], k))
            for k in ('kfac', 'isserlis', 'full')
        ]
        error_kfac = max(abs(kfac_norms - full_norms))
        error_isserlis = max(abs(isserlis_norms - full_norms))
        assert error_isserlis < 1e-4
        assert error_kfac < 1e-4